
© 2016 TechTools

DigiView Plug-in
Guide

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of TechTools except for the purpose of enhancing the operation of the product by the end user,
informing other prospective users of the product's features or for instructional benefit by the US Government or an
educational institution.

While every precaution has been taken in the preparation of this document, TechTools assumes no responsibility for
errors or omissions, or for damages resulting from the use of information contained in this document or from the use of
programs and source code or hardware that may accompany it. In no event shall TechTools be liable for any loss of
profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: April 2016 in Rowlett, Texas U.S.A.

DigiView Plug-in Guide

© 2016 TechTools

Publisher

Technical Sales

Fax

 TechTools
 P.O. Box 2408
 Rowlett, TX 75030-2408
 U.S.A.

 (972) 272-9392

 (972) 494-5814

Email

 Sales@tech-tools.com

On The Web

 www.tech-tools.com

 Support@tech-tools.com

IContents

I

© 2016 TechTools

Table of Contents

Part I Plug-in Overview 2

... 21 Terminology

... 42 Types of Plug-ins

... 53 Plug-in Capabilities

... 74 Implementation

Part II Getting Started 9

... 101 Install Tool Chain

... 112 Build an Example Plug-in

... 113 Install and Verify a Plug-in

... 134 Create a New Plug-in

... 155 Customize the Plug-in

... 176 Next Steps

Part III Development Tips 19

... 191 Plug-in Dataflow

.. 19On Signal Create

.. 19On New DATA

.. 20On Signal Disable

.. 20On Signal Delete

.. 20On Signal Enable

.. 20On Configuration Change

... 202 Enable/Disable

... 213 Streaming and Context

... 224 Timestamps and TimeScale usage

... 235 Future Compatibility

... 246 Data masks, Pack and FindChannelLimits

... 247 Fields

... 258 Zero Length Fields

... 259 Frames

... 2610 Control Fields: Soft Triggers and Filtering

.. 26AUTORUNHALT

.. 27FORCESAVE

.. 27VETOSAVE

... 2711 Finding Your Documents Folder

... 2812 PDK Directory Layout

... 3013 Final Build

... 3014 Documenting Your Plugin

... 3015 Runtime DLLs

DigiView Plug-in GuideII

© 2016 TechTools

Part IV Debugging 32

... 331 Debug Setup

... 342 Debug Work-flow

... 373 Debugging Tips

.. 37Task Manager

.. 37Hidden Dialogs

.. 38Streaming and Buffering

.. 38Searches and Triggers

.. 38Common errors

.. 40Logging

.. 40Performance and stability

Part V Plug-in Framework 42

... 421 Source Files

.. 42plugin.h (provided)

.. 42CmdParser.cpp (provided)

... 43Data Output Routines

... 44Control Routines

... 44Utility Routines

.. 45<yourplugincode.cpp>

... 45void OnLoad()

... 45void GetStrList(int ID, vector<string> &strl)

... 45ID 0: Return the plug-in description.

... 45ID 1: Return configuration options

... 46ID 2: Field Formats

... 47ID 3: Pre-Processor Name

... 48ID 4: Framework Version

... 48ID 5: Lookup tables

... 48void SetInitItem(unsigned char ID, unsigned char subID, int value)

... 49void SetCfgItem(unsigned char ID, unsigned char subID, int value)

... 49void StartOfData()

... 49void Parse(int64 timestamp,Data64 rawdata)

... 49void EndOfData()

... 50void OnUnload()

... 502 Pre-Processors

.. 51ASYNC

.. 54SYNC

.. 57SPI

.. 60I2C

.. 64STATE

.. 66I2S

.. 67CAN Bus

.. 72RAW

... 723 Configuration Editors

.. 72Check box

.. 73Radio group

.. 73Combo box

.. 73Integer Editor

.. 74Time Editor

.. 74Spinner

IIIContents

III

© 2016 TechTools

.. 75Slider

.. 75Channel Select

Part VI Plug-in Examples 78

... 781 EchoState

... 782 SimpleState

... 783 RawState

... 784 I2CBase

... 785 FrameChar

... 796 HalfDuplex

... 797 AsyncWD

... 798 Track2-full

... 799 SPI-DAC8045

... 7910 RawDAC8045

... 7911 GroupFilter

Part VII Disclaimers and Restrictions 81

... 811 No Warranties

... 812 Limits on Liability

... 813 Use and Redistribution

Part VIII Contact Information 84

Index 85

Plug-in Overview

Part

I

Plug-in Overview 2

© 2016 TechTools

1 Plug-in Overview

Plug-in Developer's Guide

(PDK version 1.2.1)

Plug-ins are user created extensions to the DigiView application. They allow the user to modify the

formatting of DigiView's built in interpreters, implement entirely new custom protocols and/or

control the run-time behavior of the application.

Plug-ins are fully integrated into the DigiView applications. Signals based on plug-ins can be

searched,exported, and printed in all the same manners as built-in types. All snaps, scrolls, lists,

waveform views, searches, auto-searches, etc work in exactly the same way as built-ins. In fact,

the internal protocol interpreters use the same framework as the plug-ins, ensuring equal

functionality.

Plug-ins can be written in any language and do not require any special Windows programming

knowledge. They are written as simple console-mode executables or scripts, using standard

console read and write calls to interface with the application. We provide wrapper routines so that

you do not have to deal with the read/writes at all. You simply respond to calls to 'parse()' to

accept data and use calls like 'startfield()' and 'stopfield()' to return your data and formatting

instructions. No knowledge of DLLs, sockets, COM, OLE, etc. is required. In fact, you don't need

to know anything at all about Windows specific programming.

The 'Getting Started' tutorial demonstrates that you really can create your

first functional plug-in in less than 20 minutes!

1.1 Terminology

Plug-ins have many uses ranging from serial protocol analyzers to soft triggers. Each application
might have different terms for the data generated. We will use the following terms throughout this
discussion.

Samples:

The raw data gathered from the hardware at its sample rate.

Channels:

These are the physical connections to the target. Our Logic Analyzers have 9,18 or 36

channels.

DigiView Plug-in Guide3

© 2016 TechTools

Active Channels:

The physical channels that are assigned to active signals. These are the channels the

hardware is monitoring.

Signal

A higher level abstraction. It maps physical channels to specific purposes in the signal. All

displays, searches, triggers, etc are defined in terms of Signals; not channels. You can

reassign a signal to a different channel without changing anything else. Multiple signals can

use the same channel where appropriate (e.g.: several SYNC signals could use the same

channel for their CLOCK function.)

Signal Parser

This refers to the routines used to translate the raw captured data into the representation in

the waveforms and list views. The signal parser uses the channel mapping and signal

configuration options to extract data from the raw capture data, interpret it and format it for

display.

Pre-processor and Post-processor

All signal parsers consist of 2 parts; a pre-processor and a post-processor. The pre-processor

interprets the raw capture data and sends this information to the post-processor. The

post-processor analyzes this data to generate the display formatting, colors and framing.

Event:

The output from the pre-processor (input to the post-processor) is called an EVENT. Events

consist of a time-stamp, some data and possibly some flags. These represent higher level

activities than raw signal transitions. Typical events will indicate errors in the protocol, start

and stop framing (if part of the protocol), a completed field of data or perhaps a single bit of

data. The exact contents of an event vary with each pre-processor.

RawData Events:

Similar to events, except the data portion of the event contains the raw channel levels at this

timestamp, rather than processed data from a pre-parser.

Field:

The final post-processor outputs a series of field definitions. Fields are stored in the signal's

internal state table. A field definition represents a single cell of data. It is displayed as a

rectangle with its value printed inside. In some serial protocols, the field widths could vary. In

Plug-in Overview 4

© 2016 TechTools

others, they are consistent. In the basic ASYNC interpreter, each character is a field. In the

STATE interpreter, each STATE is a field. In I2C, there are a number of predefined fields of

varying length.

Frame:

Some protocols group fields into Frames (sometimes called packets). A frame might

represent a complete command or transaction. In other cases, the data might be arbitrarily

grouped into fixed length pieces for easier viewing. We display a FRAME as a series of

connected fields with the first field starting with '<' and the final field ending with a '>'. In I2C,

the frame is delimited by specific start/stop conditions on the physical lines. Other systems

might use sync signals, field counts, timeouts, or specific characters to mark frame

boundaries. Frames' start/end conditions are specially tagged/formatted fields.

1.2 Types of Plug-ins

DigiView supports 3 types of plug-ins; mini, full and hybrid.

Mini Plug-ins

Mini Plug-ins use one of the built-in parsers as a pre-parser, simplifying your work. The

pre-parser handles the low level details of extracting the link level information. Your plug-in

can concentrate on higher level issues like formatting, adding another level of protocol, soft

triggering or filtering. The plug-in depends on the pre-parser supplied user options for the

basic protocol configuration. The mini plug-in can add additional options if needed (see the

I2C plug-in example) but can not add new channelselect options. For example, if you have a

custom protocol implemented over an ASYNC link, you could write a mini-plug-in based on the

internal ASYNC pre-parser. The pre-parser will extract the ASYNC characters for you (like a

UART would). Your plug-in would inspect the characters and look for your protocol's

commands, parameters and any framing indications. Your plug-in would then display the

protocol as you see fit.

Full Plug-ins

A full plug-in is based on the RAW data pre-processor. The RAW pre-processor simple filters

out all data samples that do not involve a transition on one of the channels your plug-in is

monitoring. It does not provide any user configurable options. All user options for the protocol

(including channel-selects) are specified by the plug-in. The plug-in is responsible for all low

level interpretations of the signal changes. It looks for bit timing, enable levels, clock edges,

etc. and determines what they mean.

DigiView Plug-in Guide5

© 2016 TechTools

Hybrid Plug-ins

A hybrid plug-in is based on an internal pre-parser like the mini-plug-in. However, it also

specifies additional channels to watch and assumes all responsibility for them. In this

configuration, DigiView sends the plug-in all of the events generated by the pre-parser as well

as raw data events whenever one of the additional monitored channels transition. The

pre-parser events and raw data events are properly time sequenced. A possible use for a

hybrid plug-in might be to add a unique framing signal or additional control signals to an

existing built-in protocol. For example, you might be sending ASYNC characters across a

half-duplex bus. Your plug-in could monitor the DIRECTION control line and adjust the display

formatting to differentiate which end of the link sent the message. The 'HalfDuplex' example

plug-in demonstrates this.

1.3 Plug-in Capabilities

Plug-ins can extend the DigiView application in a number of ways:

Modify formatting

The 'echostate' example demonstrates a functional Plug-in in 24 lines of code. It simply

displays state fields in a different color. This is the most basic operation a Plug-in could do;

change the way the data looks. A Plug-in could also change what is printed in the field as

easily. For example, it could easily substitute the text 'A/D' every time it sees the value '0x10'

in a particular field.

Add parameters or control signals to an existing protocol

Plug-ins can extend an existing protocol by adding extra control signals or parameters. The

'HalfDuplex' example demonstrates adding a direction line to the ASYNC parser. This would

extend the ASYNC parser to support a half-duplex bus (where a control signal switches the

bus alternately between IN and OUT directions.) Several of the Plug-in examples add a

'SHOW FIELD IDLE' parameter, controlling whether idle periods should be shown between

fields.

Add Protocol Layers to existing parsers

Protocol layers can be very simple or complex. A simple protocol layer might involve just

adding framing. Look at the 'FrameChar' for an example. It adds a framing level to the basic

built-in ASYNC parser. Whenever it sees a specific character, it starts a new frame. It also

watches for an escape character to allow the start-of-frame character to occur in the data

payload. A more complex protocol layer might include interpreting the first field of the frame

as a command and the balance as command-specific parameters.

Plug-in Overview 6

© 2016 TechTools

Add entirely new protocols

Using a full Plug-in, you could implement new protocols from the link level up. You have full

access to everything captured (related to your Plug-in). You can watch as many channels as

you want and interpret them in any way you want. For example, we currently do not have

built-in CANbus interpreter, but it could be implemented as a Plug-in. CANbus is different

enough from the built-in parsers that it would have to be built as a full Plug-in. The Plug-in

would need to do the async bit timing to extract the link level bits and then combine the bits

into CANbus specific fields.

The track2full and full-DAC8045 examples demonstrate simple protocols developed with full

parsers. These particular ones could have been based on built-in preparsers but we chose to

implement them as full, raw parsers.

Analyze the data contents and/or timing

Plug-ins can evaluate the field values while it is generating field information. It can generate

text ('PARITY ERROR') in place of field values. It can check protocol specific sequences and

print errors for field values ('ILLEGAL NAK'). Plug-ins can verify timing (down to the logic

analyzer's sample rate) and report the results as field values.

The ASYNCWD example demonstrates adding 'TIMEOUT' fields to the data stream when it

detects too long of an idle between characters.

Control DigiView's run-time behavior

In addition to or instead of printing errors or timing information as field values, the Plug-in can

send control fields to the DigiView application to force a save of this capture to disk, veto any

default save, and/or halt an auto-run sequence. This allows the plug-in to operate as a

soft-trigger, operating at the protocol level and/or as a filter to automatically sort through a

sequence of captures.

The ASYNCWD example demonstrates generating HALTs, FORCED-SAVES or

VETO-SAVES when it detects too long of an idle between characters.

DigiView Plug-in Guide7

© 2016 TechTools

1.4 Implementation

Whenever DigiView completes a new capture, the data is transferred to a buffer on the PC. Each
signal (native or plug-in) then parses the raw data into its own state table for use by all search, snap,
print, export and display routines,. The state table includes timestamp, data, and formatting
instructions.

The built-in signal parsers are partitioned into two parts: the pre-processor and the post-processor.
The pre-processor looks at the raw data and extracts the link-level protocol. It sends protocol-specific
'events' to the post-processor. The post-processor interprets the 'events' and generates the
timestamp, data, and formatting information stored in the state table.

Conceptually, plug-ins replace the post-processor. They define which pre-processor to use and then
assume responsibility for the post-processing.

For example, the pre-processor for an ASYNC signal, does bit timing analysis to find the character
start, data, parity, and stop bits. It also detects parity errors, framing errors, and break conditions. It
then forwards DATA, 9BITADDR, END, BREAK, PARITY ERROR and FRAME ERROR events to the
post-processor. The post-processor adds display formatting to this information and stores it in the
state table.

A mini-plug-in based on the ASYNC pre-processor would receive the same events and send back its
own data and formatting information. It could simply change the way the data is displayed. It can also
implement higher levels of protocol. For example, the plug-in could look for start-of-frame characters
to indicate a new packet, translate specific field values to text (0x55 = STOP) or implement in-band
escaping.

Full plug-ins operate the same way except they specify 'RAW' for the pre-processor. This is a special
processor that does not extract any link level information for the plug-in. It simply filters out unrelated
samples from the raw data. It forwards only data samples in which one or more of the channels used
by the plug-in transition. The only event forwarded by the RAW pre-processor is 'DATA'.

References:

 Available Pre-Processors and the events they generate

 Detailed Framework Documentation

Getting Started

Part

II

DigiView Plug-in Guide9

© 2016 TechTools

2 Getting Started

This guide is designed to help DigiView users get started developing their own custom plug-ins.
DigiView users range from pure hardware types to pure software types and every mix in between.
Many users have no experience compiling code on the PC while others do nothing else. This guide
attempts to minimize the learning curve for all users, regardless of experience.

This section provides a basic tutorial demonstrating building, installing and verifying plug-ins. It starts
by building one of the example plug-ins and installing it in DigiView. Next, it walks you through creating
a new plug-in based on an existing example. Finally it walks you through customizing that plug-in with
new framing and formatting configuration options.

You should have your first basic custom plug-in operational in less than 20 minutes (after installing the
tool chain if needed.)

The tutorial seems more involved than it is because we go into extreme detail to assist the absolute
beginner. For example, we list 5 steps to copy one file to another. We tell then HOW to copy, rather
than just telling you to do it. Experienced programmers would probably just read the section and then
do it their way.

There are, of course, several ways to do most things in Windows. Keeping the beginner in mind, we
chose to use menu operations rather than the command line or short-cut keys. We also decided to
perform all operations within the Visual Studio application rather than File Explorer.

Through-out this Tutorial we will refer to navigating to the <PDK> directory, and 'Launching' the
tutorial.dvdat file or the Visual Studio Express Solution file. There are several ways to do each. To
avoid repeating ourselves, we will just refer you back to this page and let you decide which method you
prefer.

Navigate to the <PDK> directory:

If you accepted the default path during installation, the PDK directory will be located at:

 <documents>\TechTools\DigiView\PDK-1-2

Note: Each PDK release is stored in its own directory, based on the version number. Version

1.2 is stored at PDK-1-2. Likewise, version 3.0 would be at PDK-3-0. You can go directly to

the PDK directory by:

· selecting 'Start->TechTools->DigiView PDK->Browse PDK Files'

· or by double-clicking on the 'Browse PDK Files' shortcut on your desktop.

DigiView Plugin Directory:

DigiView looks for plug-ins in:

 <documents>\TechTools\DigiView\plugins

Getting Started 10

© 2016 TechTools

Launch Solution file (CPPExample.sln):

We included a 'Solution' file for Visual Studio express. This contains predefined projects for all
of the plug-in examples. We also extend it in the tutorials to include the tutorial project. There
are several ways to launch this file:

· Click Start->TechTools->DigiView PDK->CPPExamples.sln

· or Click on the CPPExamples shortcut on your desktop

· or Open Visual Studio Express and select Open->solution. Then navigate to the <PDK
Directory> directory and select CPPExamples.sln.

· or Navigate to <PDK Directory> and double-click on CPPExamples.sln

Launch Capture fIle (tutorial.dvdat):

We include a DigiVIew capture file containing a simple state capture. We use it in the tutorials
to demonstrate plug-in functionality. There are several ways to launch this file:

· Click Start->TechTools->DigiView PDK->tutorial.dvdat

· or Click on the tutorial.dvdat shortcut on your desktop

· or Open DigiView and select 'Select File to Open'. Then navigate to the <PDK Directory>
and Double-click on 'tutorial.dvdat'.

· or Navigate to <PDK Directory> and double-click on tutorial.dvdat

2.1 Install Tool Chain

You can develop plug-ins with the language and tool-chain of your choice, but all of the examples

and this tutorial were developed in C++ using with the freely available Microsoft Visual Studio

Express 2010 tools. We chose these tools for the examples because they are free and functional,

ensuring you COULD develop plug-ins without additional expense. It also ensures that you start

with known, functional examples. All documentation assumes use of these tools.

You can download the Visual C++ Express or Visual Studio Express 2010 from:

 http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express

Of course, if you are an experienced Windows programmer and you already have your own

preferred tool chain, you are free to work with it instead. However, you might want to use the

Visual Studio Express tools to walk through the tutorial before starting your own development.

http://www.microsoft.com/visualstudio/en-us/products/2010-editions/express

DigiView Plug-in Guide11

© 2016 TechTools

2.2 Build an Example Plug-in

To establish a working baseline, rebuild one of the provided examples as follows:

1. Launch CPPExamples.sln in Visual Studio Express.

2. Set the Solution Configuration to 'debug'

3. Select 'View->Solutions Explorer' if not already visible.

4. Right-click on the echotest project and select 'Rebuild'.

5. Check the 'Output' window and verify it says '0 failed'.

2.3 Install and Verify a Plug-in

Install a Plug-in

There is no formal installation procedure for DigiView Plug-ins. Simply copying a plug-in into

the <DigiView Plugin Directory> will make it available to DigiView.

The echostate.exe plug-in should already be installed because the example projects were

configured to auto-install the plug-ins after each successful build.

Verify the Plug-in

In order to test the plug-in, we need some capture data for it to decode. We placed an

example capture file in the <PDK Directory>directory for this tutorial. To verify the plug-in

works, follow these steps:

1. We do not need hardware for this tutorial so unplug your DigiView if present. This simplifies

situations where your DigiView model has fewer channels than the one we used to capture

this data.

2. Launch tutorial.dvdat in DigiView. Notice that we have already defined a signal using the

built-in STATE parser/signal type.

Getting Started 12

© 2016 TechTools

3. Create a new signal based on the echostate.exe plug-in.

· click 'Config -> Signals'

· Click on 'echostate.exe' in the signal type list

· Click 'Add'

4. The signal's editor should open. Set configuration options to match the STATE signal's

settings. In particular:

· Select 'rising edge' for the Clock On

· Select Channel 4 for Clock Channel

· Select Channels 3-0 and UN-Check 'INV' for Data Channels

· Check 'DIS'able boxes for 'Enable Channel' and 'Frame Sync Channel'

· Click on OK. They should now decode the same. Click 'OK' to close the Signal

Editor.

5. Click OK to close the Project Settings.

6. The echostate.exe signal and the original STATE signal should look similar. They should

decode the same values, but they are displayed in different colors.

7. If they don't match, then STATE signal options have changed. Double-click on the STATE

signal name to open its editor and verify the following settings:

· All of the settings described in step 5 match

· States per Frame set to 0

· Show Field Idles is UNCHECKED

Notice that the built-in signal (STATE) displays more configuration items than the plug-in

signal (echostate). The common configuration items are the ones provided by the STATE

pre-processor. The extra items seen in the STATE signal are the items provided by the

built-in post-processor. Since your plug-in replaced the post-processor, these options are no

longer present. Your plug-in is taking responsibility for these functions.

We will expand on this plug-in and add some custom configuration options in the next section:

Create a New Plug-in.

DigiView Plug-in Guide13

© 2016 TechTools

2.4 Create a New Plug-in

In this portion of the tutorial, we will create a new plug-in, based on an existing example. In the

next section we will extend it with a couple of custom configuration options.

Create a New Project:

1. Launch CPPExamples.sln in Visual Studio Express.

2. Select View->Solution Explorer (if it is not visible)

3. Right-click on the first line (Solution 'CPPExamples....)

4. Select Add -> New Project

5. Select Win32 Console Application, enter 'tutorial' for the project name and press OK

6. Select NEXT and select Application Type: Console application

7. Select Empty Project then finish

8. Right-click on 'tutorial' project and select 'Add -> New Item'

9. Select 'C++ File(.cpp)' and change the name to 'tutorial'. Click 'Add'

Copy Existing Example into New Project

1. Expand 'echostate' and then 'Source files' in the Solution Explorer

2. Double-click on echostate.cpp to open it in an editor

3. Select 'Edit->Select All' then 'Edit->Copy' to copy entire file.

4. Click on the tutorial.cpp tab to activate it.

5. Select 'Edit->Paste' then 'File->Save tutorial.cpp'.

Change Project Settings to Auto-Install Plug-ins after each successful build:

This is optional but convenient. Otherwise you will need to manually copy the plug-in from

either <PDK Directory>\debug or <PDK Directory>\release to DigiView's plugin directory each

time you rebuild.

1. Right-click on the project 'tutorial' and select 'Properties'

Getting Started 14

© 2016 TechTools

2. Change 'Configuration' to 'All Configurations'

3. Paste the following line into the 'Post-Build Event command line' field and press 'OK':

call ..\installplugin.bat $(OutDir) $(ProjectName)

Build, Install and Verify

1. Right-click on project 'tutorial' and select 'Rebuild'. You should have a functional plug-in.

2. If you receive an error like: ' LINK : fatal error LNK1123: failure during conversion to COFF:

file invalid or corrupt', you have a known issue with .Net 4.5. One work-around is to

right-click on 'tutorial' and select properties. Then select 'Linker->general->Enable

Incremental Linking' and set it to NO. Other work-arounds can be found with a web search.

3. Install and verify the new plug-in as in Install and Verify a Plug-in. Of course you will

substitute 'tutorial.exe' for 'echostate.exe' in the instructions.

4. The tutorial.exe plug-in signal should look identical to the echostate.exe plug-in signal.

DigiView Plug-in Guide15

© 2016 TechTools

2.5 Customize the Plug-in

In this portion of the tutorial, we will extend the plug-in created in the last section. We will add a

couple of configuration items and then modify the parse() routine to honor them.

Modify the plug-in

1. Disable the tutorial.exe signal in DigiView and close the signal editor.

2. Launch CPPExamples.sln in Visual Studio Express.

3. Double-click on 'tutorial -> Source Files -> tutorial.cpp' in the Solution Explorer.

4. Edit the body of the source code to match the code below. The changed lines are shown in

RED.

5. Right-click on 'tutorial' and select 'Rebuild'. You should have a functional plug-in.

6. If you receive an error about file copy failing or access denied, the old plug-in version is

probably locked. Review Disable and Task Manager. Once the old plug-in is released,

rebuild the new version to invoke the copy operation again or manually copy it to the

DigiView plugin directory.

7. The newly compiled plug-in should have replaced the older version and is ready to use.

8. Click on the signal name 'tutorial.exe' in DigiView's waveform display to open the signal's

editor.

9. The signal editor will appear and the signal will be auto-enabled. Notice that there are 2

new configuration options. Play with them and notice the effects are immediately displayed

in the waveform preview.

10.Click 'OK' on the signal editor and notice the changes to the 'tutorial.exe' waveform.

Getting Started 16

© 2016 TechTools

Changes to tutorial.cpp. (new/modified lines are in RED)

#include "../Cmdparser.cpp"

// our configuration items
static bool doframe;
static bool showblue;

void OnLoad() {} // no one-time initialization needed
void SetInitItem(unsigned char ID, unsigned char subID, int value) {}

void SetCfgItem(unsigned char ID, unsigned char subID, int value) {
 if (ID == 0) doframe = (value == 1);
 if (ID == 1) showblue = (value == 1);
}
void StartOfData() {} // no start-of-parsing initialization needed
void EndOfData() {} // no end-of-parsing finalization needed
void OnUnLoad() {} // no final cleanup needed

void GetStrList(int ID, vector<string> &strl)
{ switch (ID)

{
case 0: strl.push_back("My first Custom Plug-in V.0001"); break;
case 1:

strl.push_back("Frame on 0 or 8,checkbox,0");
strl.push_back("Field Color:,radio,0,YELLOW,BLUE");
break;

case 2:
strl.push_back("State,YELLOW,BLACK,{}");
strl.push_back("State2,BLUE,WHITE,{}");
strl.push_back("SOF,GREEN,WHITE,SOF");
break;

case 3: strl.push_back("STATE"); break; // use STATE pre-parser
case 4: strl.push_back("1"); break; // require framework V 1
}

}

void Parse(int64 timestamp, Data64 data)
{ // echo all data events as individual formatted fields
 if ((data.bytes[6] & 0x80) == 0x80) //is a data event
 { if (doframe & ((data.lowint == 0)|(data.lowint == 8)))
 StartFrame(timestamp,data,2);
 else if (showblue) StartField(timestamp,data,1);
 else StartField(timestamp,data,0);
 }
}

DigiView Plug-in Guide17

© 2016 TechTools

Explanation

We modified the GetStrList() case 1 so that we could tell the DigiView application about the 2

new options we wanted presented to the user. See Configuration Editors for complete

documentation on the available editors, their syntax and return values.

Next, we modified the SetCFGItem() call so the DigiView application could tell us what options

the user chose. Notice that the SetCFGItem ID parameter tells us which configuration item we

are receiving. These correspond to the order we specified the configuration items in the

GetSTRList() case 1 above.

We also modified the GetStrList() case 2 to define 2 additional format strings. Now we have 3

different formats we can use. See Field Formats for complete documentation of field format

strings.

Finally, we modified Parse() to use the new configuration information to format the display.

Conclusion

We extended the plug-in to allow the user to change the field color and to choose whether or

not to frame when it sees a 0 or 8. We also substituted 'SOF' for the actual data in the start of

frame field. This added only about 12 lines of code and the source to the entire plug-in still fits

on one page.

2.6 Next Steps

You can create a lot of useful plug-ins by extending the existing examples. The configuration sections
can generally be debugged without the use a debugger and simple parse() routines can often be
debugged through the visual feedback provided by DigiView. The plug-in can even write debug
message to the waveform.

However you will need a deeper understanding of how the framework works in order to write and
debug more involved plug-ins. The remainder of this guide provides that information.

Development Tips provides a lot of useful tips for generating the formatting you want and for
understanding when and why the DigiView application calls the various routines in your code.

Debugging explains how to setup Visual Studio to debug the plug-in and provides some recommended
work-flows to make debugging go smoothly.

Plug-in Framework explains the purpose and syntax of every file and procedure in the framework.

Plug-in Examples provides a brief description of each of the provided plug-in examples.

Development Tips

Part

III

DigiView Plug-in Guide19

© 2016 TechTools

3 Development Tips

This section provides a lot of useful tips for generating the formatting you want and for understanding
when and why the DigiView application calls the various routines in your code.

3.1 Plug-in Dataflow

Each time the data changes (from a new capture or loading a previous capture), Each defined

signal parses the data into an internal state table to be used by all search, export, print and display

routines. Signals that use plug-ins, stream the data through the plug-in before storage.

Multiple signals can use the same plug-in. Therefore, each signal sends its configuration to the

plug-in before each parse run. The configuration items are defined by the parser and

independently selected by the user for each signal.

On Signal Create

When the user defines a new signal, the first choice he makes is to select the signal type. They

are presented with a list of signal types that include our native types (bus & boolean), our built-in

parsers and all of the plug-ins found in our plug-in directory.

If the user selects a plug-in the following happens:

· The plug-in is loaded into memory if it is not already loaded

· The plug-in's OnLoad() routine is called if it was not already loaded

· The plug-in's GetStrList() is called once for each string list

· The user is presented with a signal editor dialog to configure the signal

· The user's selections for THIS signal are stored

· The steps in On New Data are run

On New DATA

Each time the capture data changes, the following happens:

· the plug-in's SetInitItem() is called multiple times to set some globals

· the plug-in's SetCfgItem() is called multiple times to configure the plug-in with the user's

settings for THIS signal

· the plug-in's StartOfData() is called to allow final preparations

Development Tips 20

© 2016 TechTools

· Data events from the pre-processor are streamed to the plug-in's Parse() routine.

· Parse() uses calls to various Data Output Routines to stream back field information.

· When all of the events have been sent, the plug-in's EndOfData() is called.

· If multiple signals are using the same plug-in, the above sequence will be repeated for each

signal in turn (using that signal's specific configuration and the resulting event stream)

On Signal Disable

Anytime a signal is disabled, if it is the last signal using the plug-in, the plug-in's OnUnload() is

called and then it is unloaded from memory. However, its configuration is remembered.

On Signal Delete

Anytime the signal is deleted, if it is the last signal using a plug-in, the plug-in's OnUnload() is

called and then the plug-in is unloaded from memory.

On Signal Enable

Anytime a signal is enabled, it is loaded into memory as described above but its editor is not

invoked. The stored configuration is used. A complete parse cycle is run as described in On New

Data.

On Configuration Change

Each time the user changes a configuration option (in the signal editor), a complete parse cycle is

run as described in On New Data . This gives immediate feedback about the effect of their

selection.

3.2 Enable/Disable

Each time you recompile your plug-in and wish to test it, you need to copy it to the plug-in

directory. If DigiView is still running and your old plug-in is still in use, Windows will not let you

over-write it. To release the old version, you need to do one of the following:

· shut down DigiView, copy the plug-in, restart DigiView

· delete the signal using your plug-in, copy the new plug-in, recreate the signal

· disable the signal using your plug-in, copy the new plug-in, then enable the signal

The disable/re-enable is the best. It is fast and easy and still preserves all configuration items.

DigiView Plug-in Guide21

© 2016 TechTools

You can disable/enable the signal from the Signal Definitions tab in the project settings window or

from the signal's configuration editor. The signal's editor can be opened from the Signal Definitions

tab or by clicking on the signal name in the waveform view.

NOTE: If you use the enable/disable checkbox from the signal editor, be aware that any changes

you made to the plug-in's configuration options will NOT be reflected in the editor until it is closed

and reopened. Also, anytime you make changes to any of the configuration option definitions, you

should check your settings in the signal editor. If you change the option name/label, it will be

treated like a new option and set to its default settings. Also, we store configuration as indexes

into the options you provide so if you change some of the parameters, we could be selecting a

different setting now.

3.3 Streaming and Context

It is important to realize that data is streamed to your plug-in and it is expected to stream back its

data. Your plug-in will not have random access to the data or even know how much data it will

receive. Since your plug-in is sharing the system with a couple dozen other plug-ins, you do not

want to absorb the data into an internal array, process it and then send back your results. This is

very inefficient in resource usage and is slow. The plug-in must process a single piece of data at a

time and immediately return. This requires a certain mindset during development.

The plug-in must maintain its state in the protocol while parsing so that it can interpret each piece

of data in context. The example 'RAWSTATE.CPP' uses static variables to remember the current

state of the clock and enable lines. These are used for edge detection. In each parse() call, it

examines these variables to see the previous state of the lines and compares them to the current

state to detect transitions. Before exiting, it updates the clk_was and en_was variables to provide

context for the next call. This is a typical way of maintaining simple context information.

This works in simple parsers, but in more complex parsers (like protocol parsers), you probably

need to save more than line level context; you will need to save your protocol context (like 'I'm

waiting for the sub-command to command 5'). For example, it might receive the first byte of a

frame and interpret it as a command. It can probably send back a field at this point to print the

command, but it must remember which command was received so that when the next byte is

received, it will know what to do with it. No doubt its meaning varies with which command was

sent.

State machines are very well suited to this task. A single state variable maintains your current

protocol context. Additional static variables are used to remember significant information (like the

Development Tips 22

© 2016 TechTools

edge detection mentioned above.) For example, you might be in state 'waiting for address low in

command all-call'. In this case, you probably stored address-high in a previous state. When both

are gathered, you might send out a single field with the combined value and then move on to state

'waiting for checksum'. You update your state variable before returning from each event. At the

start of each event, you look at the state variable for context in evaluating the current data.

We are not going to discuss state machine design, but there is a lot of information on the web

(search for 'finite state machine design'.) We use a simple state machine in the 'RawDAC8045'

example.

3.4 Timestamps and TimeScale usage

Timestamps:

DigiView hardware uses very large timestamp counters (> 50 bits). All time is measured

relative to the TRIGGER POINT. Time prior to the trigger is represented with negative

numbers. Time following the trigger is represented with positive numbers. All timestamp

values passed between the application and the plug-in are represented with SIGNED INT64s.

All timestamps sent to your plug-in are guaranteed to be in chronological order. Any given

timestamp will be larger than any previously received timestamp. We require that your plug-in

send us chronological data as well. For convenience, we allow a few exceptions where your

plug-in can send us back-to-back fields with the SAME timestamp.

TimeScale

DigiView uses scaled timestamps in its internal data structures to eliminate the need to deal

with floating point values. This greatly improves parsing, displaying and searching

performance. For example, a 400MHz sample rate results in a 2.5ns resolution. When we

store these timestamps, we scale the time to a whole number by multiplying it by 2. In this

case, TimeScale would be 2, telling your plug-in that all timestamps (to and from your plug-in)

are scaled 2x. This approach allows the entire application (including your plug-ins) to work

with 64 bit integer time.

Many plug-ins do not care about absolute time. The fields generated by the plug-in usually

use the timestamp from a particular event. The FIELD timestamp is blindly set equal to the

EVENT timestamp; no need to scale it. In these cases, you can ignore the fact the

timestamps have been scaled.

The only time a plug-in cares about absolute time is if it is doing timing analysis or an ASYNC

DigiView Plug-in Guide23

© 2016 TechTools

type protocol. In those cases, the plug-in has to be concerned about real-time and must

compensate for the scaled values it receives and must return. You might be tempted to

convert each received timestamp to real-time by dividing it by the TimeScale. Then you could

directly subtract timestamps to measure real-time duration. Then, when you need to send a

field back, you would take the real-time timestamp and multiply it by the TimeScale to return

properly scaled time. DON'T! This results in a lot of needless floating point math and can

have a considerable performance impact.

Instead of converting scaled-time timestamps to real-time, you should convert your real-time

parameters to scaled-time. This is a single integer operation that occurs once before the data

streaming starts. Then during the parse calls, you continue working with scaled numbers.

Many field timestamps will be set to some timestamp received from an event (no math

required). Anywhere you require calculated times, you can use integer math to calculate a

scaled time. This converts all of the math in the parse-time routines to integers. It also

confines the usage of any math at all to the time checks themselves (rather than every

received event and every sent field).

Examples:

- If you have a timeout configuration item, then you would multiply it by the TimeScale before

storing it for internal use. To check timestamps for the timeout condition:

if ((newscaledtimestamp-oldscaledtimestamp) > scaledtimeout) ///// timed out

- If you have a BAUD RATE parameter, you would immediately convert it to a scaled time

duration: ScaledBitTime = (1/baudrate)*TimeScale.

TimeScale usage is demonstrated in the AsyncWD example.

3.5 Future Compatibility

To make your plug-in as compatible as possible with future framework releases, you should:

· Return empty strings for any GetStrList call you do not understand.

· Fully decode the ID and SUBID in SetCfgItem and SetInitItem calls.

· Do not modify the CppCmdParser.cpp file

Development Tips 24

© 2016 TechTools

3.6 Data masks, Pack and FindChannelLimits

The user is free to assign any channel(s) he wants to a signal. They do not have to be

consecutive. In fact multi-bit signals (like buses) do not even have to be contiguous. For

example, a 4 bit bus could be assigned to channels 3,9,21 and 32. The only rule is that the bits

are ordered by their channel numbers. The lowest channel number assigned is the LSB of the

bus. One signal's channels can be interspersed with other signal's channels. Mini plug-ins do not

have to worry about this as the pre-processor normalizes the data before sending it in an event. It

does this by packing the defined bits together and then shifting them to bit 0. In this example you

would receive a 4 bit bus using bits 0-3 of the data field in the event.

Full and Hybrid plug-ins can define channel-select options of their own to allow the user to assign

additional channels to the plug-in. When you use these, you will receive RAW DATA events

whenever ANY of your assigned channels transition. Your plug-in must then extract the bits of

interest and normalize them for your own use. The framework provides 2 routines to help with this:

uint64 pack(uint64 dat, uint64 mask, uint64 HighBit, uint64 LowBit)

This does the data extraction, bit packing and shifting needed to normalize a given signal's

data. You pass the signal's data mask (returned from the channelselect configuration option)

and the current raw data sample. It returns the signal's bits, packed together and 0-bit

justified. The remaining parameters are the highest and lowest set bits in the data mask.

These should be pre-calculated from the data mask, ONCE during initialization. Since pack is

called hundreds of thousands of times pre signal per capture, performance is improved by

pre-calculating these limits and then having the pack routine limit its work to this range.

void FindChannelLimits(uint64 mask, uint64 &HighestBit, uint64 &LowestBit)

This is an optimization helper. During configuration, you can use this to pre-calculate the

highest and lowest bit positions used in a data mask. These are then passed to the pack

routine each time you need to extract a given signal's data. You pass the datamask (from a

channel select option) and references to the HighestBit and LowestBit variables.

3.7 Fields

A Field is the smallest unit of information your plug-in can display. It might be derived from a single

bit (ACK/NAK, Rd/Wt), multiple bits or even multiple bytes/symbols/characters. For example, you

might emit a field called 'SYNC' whenever you see 10 or more 0x55 in a row or an extended quiet

period. It's up to you. A field starts at the indicated timestamp and extends until the next field is

received.

DigiView Plug-in Guide25

© 2016 TechTools

3.8 Zero Length Fields

Zero Length Fields are normal fields except their start and end times are identical. Normally, we

display a field such that it stretches from the time the field began to the point it completed (last bit

for example). ASYNC characters have very deterministic start (middle of start bit) and end (middle

of end bit) times. Sync fields do not have ending times. For SYNC signals, we usually show the

field as stretching from the field's first bit to its last bit, implying that all of these bits make up the

field. But how do you display a one bit field where the first bit IS the last bit? This is a zero length

field. We chose to show the field as starting at the given bit time and stretching just long enough

to allow us to print the field's value and then terminate it. Its closing point is NOT tied to a

timestamp. We are labeling a point in time; not a timespan.

Another use for zero length fields is in state signals. Sometimes we like to think of states like a

receiving latch sees them; when the state clock transitions, the latch updates and holds the state

value. In this case, we simply start a new field each time the clock transitions. Each state is

displayed from its starting time until the next field starts. Another way to view states is that we

want to see the state value AT the clock edge but don't want to imply that it holds until another

strobe. In this case, we could use zero length fields to label each transition with its value at that

instant. We would make StartField() call at the clock transition time and then an EndField() call

with the same timestamp. Several of our build-in parsers and the examples demonstrate this with

the 'show idle' options.

3.9 Frames

A Frame is a grouping of fields. Not all protocols or other parsers will generate frames. In some

cases, there is no inherent framing of the data; it is just a stream of data. For example, the output

from an A/D converter is a series of measurements. There is no 'first' measurement or other

grouping. In this case, you might choose to frame them into chunks of 16 readings each for better

readability when displayed in tables. But in general, there is no real framing. For this example, a

plug-in could generate all fields with StartField() calls. In another example, assume this mythical

A/D converter converted 4 channels of data, each in turn. In this case, there is a natural framing

of 4 readings in each group. Your plug-in would send the first reading with a StartFrame() call and

the next 3 readings with StartField() calls. Then it could optionally generate an EndFrame() call to

terminate the frame if you wanted to see IDLE time before the next frame. Each field could use a

different field format to name the fields CH1,CH2,CH3 and CH4. This would enable you to use

searches to find things like: 'Find a frame in which CH3 < 0x59 and CH4 > 0x55'. Framing affects

waveform display formatting, table list formatting and search capabilities.

Development Tips 26

© 2016 TechTools

3.10 Control Fields: Soft Triggers and Filtering

In addition to the various display fields, the plug-in can send back control fields. Controls fields

allow the plug-in to HALT an autorun sequence and/or control whether the current capture should

be saved to disk.

Each capture can be saved to disk. Plug-ins and auto-searches can control whether a particular

capture will be saved or not. This allows them to act as filters to ensure interesting captures are

preserved for later inspection or that uninteresting ones are excluded. You might use these

controls instead of HALT controls to capture multiple soft-triggers. There are several settings in

the acquisition settings to control the maximum number of captures saved to disk, the amount of

disk space to use or preserve and whether we save round-robin or halt when a limit is hit. All of

these settings are honored during any capture save.

Whether or not a specific capture is saved to disk is controlled by the following logic:

· If any plug-in or auto-search object issues a FORCESAVE command, then SAVE

· else if any plug-in or auto-search object issues a VETOSAVE request then do NOT SAVE

· else if the default setting (acquisitions options) is set to SAVE, then SAVE

· else do NOT SAVE.

The save/veto controls operate independently of the HALT command and independently of

whether we are doing a single capture or running in auto-run mode. You can halt and save for

example. Refer to AsyncWD.cpp for an example.

AUTORUNHALT

During auto-run sequences, the software will arm, capture and transfer data continuously until it

receives a HALT command from a plug-in or auto-search or the user presses the halt button. This

allows plug-ins and auto-searches to act as soft triggers. They can look for conditions that can not

be detected with the hardware trigger circuits (like protocol level events or duration measurements

beyond the hardware timer limits) and halt the acquisition so that the interesting event is visible on

the screen.

DigiView Plug-in Guide27

© 2016 TechTools

It is important to understand that although soft triggers can 'trigger' on very high level, complicated

events, they differ from hardware triggers in that they are not guaranteed to capture

one-time/infrequent events. They capture a buffer of data and analyze it. If the buffer does not

contain the trigger condition, another buffer is captured and analyzed until the trigger condition is

found. This means that the target activity that occurs between fetches is never seen. However, if

the trigger condition is repetitive, you will eventually catch it. The auto-run sequence combined

with an auto-search or a plug-in using the HALT control code, allows you to start DigiView

capturing and walk away. If it ever captures your soft trigger condition, it will halt on that capture

so that it is on the screen when you return.

FORCESAVE

A FORCESAVE command from any plug-in or auto-search over-rides all VETOes and the default

setting and saves the current capture to disk.

VETOSAVE

A VETO command from a plug-in or auto-search requests that the current capture NOT be saved.

This over rides any default save setting. However, it is over-ridden by any FORCESAVE

command from any plug-in or auto-search.

3.11 Finding Your Documents Folder

All of our per-user files are placed under the user's 'Documents' folder. We refer to this as the

<Documents> directory or folder. The exact name and file system location of the 'Documents' folder

varies under different versions of Windows. You can navigate to it by:

· double-clicking on the 'My Documents' icon on the desktop

· selecting 'Documents' from the START menu

· clicking on 'libraries->Documents' in file explorer.

The default PDK installation and DigiVIew's plugin directory are located at:
<Documents>\TechTools\DigiView\

Development Tips 28

© 2016 TechTools

NOTE: Do not place anything except your plug-in's executable (and optionally its help file)

in the plug-in directory. EVERYTHING (except *.rtf files) found in this directory is added to our

plug-in list. We can not determine if it really is a plug-in until we try to load it at signal creation

time. For example, a *.doc file is probably associated with WORD. We would add it to the plug-in

list. If you create a signal using this file, we will attempt to launch the file (which would launch

WORD) every time we capture data. Likewise, your plug-in source would probably launch your

IDE or compiler.

3.12 PDK Directory Layout

If you accepted the default install path during installation, the PDK was installed under your

<Documents> directory. The <Documents> folder name and location varies between Windows

versions.

See Finding your Documents Folder for help finding <Documents>.

DigiView Plug-in Guide29

© 2016 TechTools

Each example project and its source is placed in its own sub directory under the PDK root.

We created a 'solution' (CPPExamples.sln) containing all of the example projects. It is located in

the PDK root directory. The examples all use the same CmdParser.cpp and plug-in.h files. These

are also placed in the PDK root directory.

Each plug-in project includes the ../cmdparser.cpp and ../plug-in.h files as well as the example

specific source file. NOTE: the CmdParser.cpp file handles all of the interaction with the main

Development Tips 30

© 2016 TechTools

application. We included its source as a reference for porting to a different language. There is no

need for you to modify it. All of your code goes in the project specific file.

3.13 Final Build

When development is complete, change the project configuration from 'Debug' to 'Release' and do

a final build. The resulting files will be smaller and faster. The release versions will be placed

under '<PDK root>/release' instead of '<PDK root>/debug'. If your project is set up to 'Auto-Install'

the plug-in, then it will also be placed in the DigiView plugin directory.

3.14 Documenting Your Plugin

You can document your plug-in's configuration options and behavior by placing a TEXT or

RICH-TEXT (rtf) formatted file in the plug-in directory. Give the file the same root name as your

plug-in and an .rtf extension (myplug-in.exe uses myplug-in.rtf). Use the .rtf extension even if the

file is plain-old-text. You can use Wordpad or OpenOffice to create RTF files. Of course, notepad

can create text files. The built-in viewer does not support advanced features like embedded

graphics. Stick to stylized text.

When the user is editing the signal's configuration options, they can press the help button to view

your document. This is a good place to remind the user (or yourself) what the plug-in does, what

the options do, or anything they should do or avoid ('be sure to select rising edge clock' or 'we

ignore SYNC settings for now').

3.15 Runtime DLLs

The development machine will have all DLLs needed for the debug and the release versions you

produce. If you move the plug-ins to a machine without the Visual Studio tools installed, it will not

have the debug DLLs and might not have the run-time DLLs. You can fetch the run-time DLLs

from the Microsoft download site:

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=5555

Debugging

Part

IV

Debugging 32

© 2016 TechTools

4 Debugging

Debugging a plug-in is a little different than most applications because it involves 2 interactive

processes; DigiView and the plug-in itself. You can not just set breakpoints and then 'run' the

plug-in. You have to wait until DigiView starts the plug-in as a separate process. Once the plug-in

is running, you can attach a debugger to it and set breakpoints. However, at this point, the entire

plug-in runs to completion before you can attach the debugger. You usually want to set

breakpoints before the plug-in runs but you can't attach the debugger until after it runs.

Another complication is the fact DigiView guards communications with the plug-in with a 2 seconds

timeout. If the plug-in stops accepting or returning data for more than 2 seconds, DigiView

unloads the plug-in and disables any signals using it. Of course, every time your plug-in hits a

breakpoint or you pause too long on a single-step, it will timeout.

DigiView includes a feature to help with both of these problems.

Debug Plug-ins option

DigiView includes an option setting to assist plug-in debugging. Setting

'Config->Environment->Debug Plug-ins' causes DigiView to modify its behavior as follows:

Pauses after loading a plug-in

A dialog is presented immediately after loading a plug-in and starting to communicate with it.

At this point, the OnLoad routine is the only user code in the plug-in that has executed. This

pause gives you a chance to attach a debugger and to set breakpoints in your plug-in code

before any other code is executed. Once you select 'OK', the plug-in is interrogated,

configured and called to parse the existing capture data.

Traps plug-in communication timeouts

All interaction with a plug-in is guarded with a 2 second watchdog timeout. Normally, if the

plug-in does not respond to a command or absorb enough data to allow new commands in

DigiView Plug-in Guide33

© 2016 TechTools

that amount of time, an error is generated. the plug-in is unloaded, and any signals using the

plug-in are disabled. When debugging support is enabled, a timeout dialog is presented rather

than unloading the plug-in.

If you select 'Ignore', the timer is reset and the operation is retried. This allows you to set

breakpoints and single-step your code without DigiView killing your process. It also means

that once you select 'Ignore', DigiView will pick up where it left off rather than starting over.

Selecting 'Abort' will unload the plug-in and disable associated signals.

The following sections describe how to set up for debugging and some work-flows to deal with

these challenges.

4.1 Debug Setup

Need Data But Not Hardware

You will need sample capture data to exercise the plug-in but do not necessarily need

DigiView hardware. If you are using one of the example captures, you should unplug your

DigiView or select NO if prompted to convert the file to match your hardware. This reduces

complications if the DigiView used to capture the data had more channels than your DigiView.

Disable ALL plug-in based signals

When multiple signals use a single plug-in, DigiView loads a single instance of the plug-in into

memory. DigiView will not unload the plug-in until ALL signals using it have been deleted or

disabled. It can be annoying to have to disable several signals each time you update the

plug-in. Also, each signal will attempt to use the plug-in making it difficult to track exactly

which configuration is being debugged. For the smoothest, most consistent debug session, it

is usually better to have only one signal enabled at a time that uses your plug-in.

When in debugging mode, DigiView will pause before each plug-in is loaded, giving you a

chance to attach a debugger to that specific plug-in. Debugging is simpler if there are no

Debugging 34

© 2016 TechTools

signals using plug-ins except the one you are debugging. Delete or disable all plug-in based

signals.

If you already have a signal defined that uses your plug-in, disable it for now, even if you intend

to use it for debugging.

Change Solution Configurations to Debug in Visual Studio Express

Turn on Expert settings in Visual Studio Express

Select 'Tools->Settings->Expert Settings' to enable additional debugging options

See the next section for work-flow suggestions.

4.2 Debug Work-flow

First Load (without using a debugger)

1. We won't be using a debugger for this part so do NOT set Debug Plug-ins Option in

DigiView.

2. Create/enable signal

· click 'Config -> Signals' in DigiView

· Select your plug-in in the signal type list

· Click 'Add'.

· The plug-in will be loaded, enabled, and executed.

3. If you get error messages (other than timeouts):

· The plug-in will be unloaded

· The message will describe problems with the configuration string syntax.

· Make corrections, rebuild, and re-enable the signal until it loads without errors.

4. If you get TIMEOUT messages:

DigiView Plug-in Guide35

© 2016 TechTools

· The plug-in stopped responding and will be unloaded.

· See Using A Debugger below.

5. If the plug-in loads without error but doesn't parse correctly:

· The plug-in will remain loaded and active.

· Disable the signal to force unloading of the plug-in.

· See Using A Debugger below.

Using a Debugger

NOTE: you can not use F5 or 'Debug->Start Debugging' with a plug-in. You must

invoke the plug-in with DigiView and then 'attach' the debugger to plug-in after it is

running.

1. Set Debug Plug-ins Option in DigiView

2. Enable the Signal in DigiView.

3. DigiView will load the plug-in and execute its onload(). The 'attach debugger' dialog will

appear.

4. In Visual Studio, select 'Debug->Attach to Process'. If you don't see this option, you

forgot to select 'Tools->Settings->Expert Settings' during Debug Setup.

5. Select your plug-in's name from the list and click 'Attach'

6. Open the plug-in source and set breakpoints. See Plug-in Data-flow for information on

where you might want to set a breakpoint. You will probably put one at the start of parse()

so you can look at variables to determine if the configuration variables were interpreted

properly and then start debugging your actual parse() algorithms.

Debugging 36

© 2016 TechTools

7. Dismiss the 'attach debugger' dialog. DigiView will start interrogating, configuring and

streaming data to the plug-in until it hits a breakpoint or completes.

8. If the plug-in hits a breakpoint, DigiView will display a timeout dialog after 2 seconds. You

can ignore this and continue single-stepping, viewing variables etc. until you run out of data.

(see Streaming and Buffering). When the plug-in runs out of data or fills its output FIFO, it

will hang in a loop in CmdParser(). Dismissing the timeout dialog will allow DigiView to

absorb your plug-in's data and fill your input FIFO with more data to process. The timeout

dialog will re-appear in about 2 seconds. These FIFOs are large so you could debug

hundreds of samples before having to dismiss the dialog.

9. When you finish debugging, RUN to completion and dismiss timeout dialog. If DigiView

appears to lock-up/freeze at this point, see the notes about Hidden Dialogs.

10.If changes are needed:

· Disable the signal & close its signal editor

· Edit and rebuild the plug-in

· Copy your plug-in to <DigiView's plugin directory> if not using Auto-Install

· Return to step 2 and repeat as needed.

11. If you run to completion and wish to breakpoint or step the entire process again (without

rebuilding):

· Disable the signal in DigiView. This causes DigiView to unload the plug-in.

· Re-Enable the signal. This causes DigiView to reload the plug-in and run a full parse

cycle.

12. If you just need to debug the parse() portion of the code again (without rebuilding):

· Open the signal editor and change one of the configuration items. This will skip the

loading/unloading and calls to GetStrLits(). Each configuration change does a complete

parse sequence.

DigiView Plug-in Guide37

© 2016 TechTools

4.3 Debugging Tips

Task Manager

If Windows refuses to let you replace your plug-in with a new version with a message about being

in use, it means that DigiView is still using it or it is a Zombie (abandoned.) This really should not

happen but if something goes very wrong with the plug-in and it stops responding to the DigiView

application, DigiView tries to kill the process. If Windows can not kill it for some reason, it stays in

memory and and the disk copy is locked.

If this happens, first make sure that every signal using your plug-in is disabled. If that is not the

problem, then open the Windows task manager (usually available through cntrl-alt-delete or by

right-clicking on the task bar) and review the Processes list. Find your plug-in's name in the list,

click on it and select 'End Process'. If it is listed multiple times, end all of them. Now you should

be able to copy over the new version of the plug-in.

Hidden Dialogs

DigiView presents modal dialogs to allow you to attach a debugger to a plug-in and to report

timeouts. These are configured to always be on top of the DigiView application. However, in

some circumstances, Windows will ignore the setting and paint the application itself on top of the

dialogs. Since the dialogs are modal, Windows will freeze the main application itself (DigiView)

until the dialog is dismissed. Since the dialog is hidden behind the application, you can not

dismiss it.

Note that this is not a DigiView specific problem. It just seems more confusing when you have 2

interactive programs (DigiView and the Debugger) running at the same time. This seems to

happen in Windows if you have a modal dialog open in one application, then switch to another

application. When you return to the first application, Windows sometimes paints it on top of its

modal dialog, creating this problem.

We have seen this behavior if the timeout dialog is present and you click RUN in the Visual Studio

Express debugger to allow the plug-in to complete. When the plug-in finishes, focus is returned to

DigiView but it paints in the wrong order.

There are 3 wwork-arounds to this problem:

· Click on DigiView's icon in the task bar TWICE. The first click will sometimes minimize the

application or other times appear to do nothing. The second click will usually paint the

application and dialog in the correct order so the dialog is on top where you can dismiss it.

Debugging 38

© 2016 TechTools

· Or dismiss the dialog BEFORE pressing RUN in Visual Studio (assuming you can do so in 2

seconds).

· Or move the dialog to a blank spot on the desktop when it pops up so that you will always

have access to it, no matter what order Windows paints items..

Streaming and Buffering

The communications between the DigiView application and your plug-in use overlapping,

streaming data packets with FIFO buffering in both directions. Once you hit a breakpoint in your

code, and DigiView displays a timeout dialog, you could have several hundred received events

queued up for processing. Likewise, you could send several hundred field definitions back to

DigiView before filling up the queue. The implications are that once you hit a breakpoint, you could

process a lot of data before having to dismiss the timeout dialog.

Eventually you will run out of events to process or you will fill up your TX queue and the plug-in will

hang in the CmdParser portion of the template, attempting to communicate with the DigiView app.

If this happens, simply dismiss the timeout window so that DigiView can process its end of the

data and the plug-in will continue. If you were single stepping or you hit another breakpoint,

DigiView will timeout and display the dialog again.

Searches and Triggers

Search and trigger configurations depend on the configuration options from your plug-in. Any

changes to the configuration items or the field formats in your plug-in could invalidate the trigger

and/or search settings.

Common errors

Configuration string syntax

Fortunately, DigiView does extensive error checking of all of the configuration strings when the

plug-in is first loaded. Any errors are reported and the plug-in is unloaded. Most error messages

point to the specific field within the specific string with the error. Debugging this portion is usually

pretty easy can be done without a debugger. Refer to Configuration Editors for the correct syntax.

Field Chronology

Once the plug-in fully loads, the most common problem is getting fields out of sequence. If your

plug-in ever sends back a field with an older timestamp than the previous field, an error is reported

DigiView Plug-in Guide39

© 2016 TechTools

and the plug-in is disabled; no time-travel allowed. However, you can generate back-to-back fields

with the SAME timestamp in some circumstances. The following sequences are allowed to have

the same timestamp:

· StartFrame or StartField -> EndFrame or EndField (zero length field)

· EndField -> EndFrame (EndFrame over-rides)

· EndFrame -> EndField (EndFrame over-rides)

· EndField -> EndField (2nd one ignored)

· EndFrame -> EndFrame (2nd one ignored)

Unexpected formatting

All formatting is controlled by your SendField calls and the Field Formats you specify. If you add or

delete field format specifications to the string list, it will throw off any references to them. Using

enums (as opposed to using strl.push_back() calls and hard coded indexes) as demonstrated in

the examples goes a long way toward eliminating these mistakes. As a bonus, it makes the code

more readable and maintainable. However, using enums and direct indexing makes it easy to

miss/skip an entry in the stringlist. These empty strings get converted to: '<empty>'. Generally,

the application will complain about 'entry x has too few parameters: <empty>'

If some of your Lookup Table values are not printing, it could be due to a reference to an

undefined table or an undefined index into a table. Of course, it could also be due to specifying

the same color for the background and the font :)

Ignoring data.bytes[7]

Data.bytes[7] in the parse() calls holds a code that describes the type of event we are receiving.

0x90 means RAW DATA event and 0x80 means parser data event. We generally ignore the value

of data.bytes[7] in the examples. This is OK because the framework guarantees that mini plug-ins

will never receive raw data events and full plug-ins will never receive parser data events.

Constantly checking would be a waste of time. Only hybrid plug-ins receive both types of events

and need to differentiate between them.

If you take a mini or full plug-in example and convert it to a hybrid, then forgetting to qualify on byte

7 will cause total confusion. See the 'HalfDuplex' example to see how a hybrid plug-in handles the

event type code.

Debugging 40

© 2016 TechTools

Logging

DigiView currently does not provide any type of logging facility for plug-in debug. However, your

plug-in has full access to the PC so it could create log files of its own. If you want the log to cover

the lifetime of the plug-in, you could open a log file in the OnLoad() call and ensure it is closed in

the OnUnload() routine. If you want it to log a single capture parse, you could open/close it in the

StartOfData() and EndOfData() routines. Keep in mind that any logging from within the parser

routine could generate a lot of data and could have an impact on DigiView's performance. A

low-impact form of logging is to store significant events in memory and then dump them to a file on

EndOfData(). For example, you might store the last dozen events and fields in memory. When

parsing is complete (or fails), you could dump them, along with some of your current state

(bit-number, field count...) to disk.

Performance and stability

Keep in mind that your plug-in becomes a part of the DigiView application. Its performance and

stability affects the entire application. At any given time, there can be dozens of plug-ins

operating. Also, each plug-in is called to parse the raw data each time new data is captured. The

plug-in's parse() routine is very performance sensitive. It can receive hundreds of thousands of

calls per data capture, per signal.

DigiView is fairly tolerant to plug-in lockups or crashes. The plug-in is loaded as a separate

process. All communications with it use separate threads, timeouts (about 2 seconds) and large

FIFOs. If the plug-in stops responding, DigiView will attempt to kill the process. However, killing a

process is not always successful and certainly undesirable. If you are having problems with

plug-in lock ups, it could affect the stability of the DigiView application or the system.

Plug-in Framework

Part

V

Plug-in Framework 42

© 2016 TechTools

5 Plug-in Framework

We provide a template that handles the communications protocol, provides access routines and stubs
out routines for your code. The framework invokes several calls in your code to status and configure
the plug-in and to parse the captured data into protocol frames and fields. Your code then uses
access routines in the framework to send back control and data field descriptions.

A plug-in is written as a console mode program. This makes it very language independent, lightweight
on resources and easy to write. There are no DLLs, sockets, pipe handles, byte orders, Windows
APIs, etc to deal with and every language supports console I/O. It can be a compiled executable or a
script.

We provide a module (CmdParser.cpp) to handle the I/O itself and to handle our communications
protocol. Your plug-in code focuses on interpreting the data and generating formatting instructions.

CmdParser.cpp provides main() and takes control when the plug-in is loaded. It interacts with the
DigiView application, interprets its commands and forwards specific commands and data to routines in
your plug-in code. Your plug-in then uses CmdParser.cpp supplied access routines to return field
information to the DigiView application. The section Getting Started above discussed the provided
example files, project layout and instruction on how to build the plug-ins.

5.1 Source Files

A complete plug-in consists of 3 files:

plugin.h

CmdParser.cpp

<yourplugincode>.cpp

plugin.h (provided)

This include file defines a few globals and prototypes the access routines in the framework and the
stubs in your code. It also defines a union called Data64. We use int64s extensively. This union allows
us to access an int64 as a pair of int32s or an array of 8 bytes, as well as an int64.

CmdParser.cpp (provided)

This module handles all communications with the DigiView application. It parses the commands and
data and forwards them to your plug-in code as needed. It also provides data output routines your
plug-in uses to send back information. We provide the source to this module for your reference, in
case you want to port it to another language. You do not need to make any changes to
CmdParser.cpp. All of your code goes in the plug-in specific file <yourplug-incode.cpp>.

Your plug-in uses the following routines to interact with the application.

DigiView Plug-in Guide43

© 2016 TechTools

Data Output Routines

Control Routines

Utility Routines

Data Output Routines

These routines allow your plug-in to return field information to the application. They control all framing
and formatting of the data.

Parameters

The access routines all share the following parameters:

TIMESTAMP:

This is the time at which the field starts or stops. Note that timestamps must never be less than

the previous timestamp. They are allowed to match the previous timestamp in special cases. See

the section 'Debug Tips/Common Errors/Field Chronology' and 'Development hints/Zero Length

Fields' below.

DATA:

You can supply up to 48 bits of data. This data is interpreted by the Field Format for formatting

and display. Usually, the data is simply displayed as a single number. However, the Field Format

can extract slices (bit ranges) of the data to display multiple numbers in a field. It can also specify

slices to be used as indexes into lookup tables to print data driven text strings. How the bits are

used is defined entirely by the Field Formats you specify (see Field Format Syntax below.)

FormatID:

FormatID is an index into the field format list you supplied in the GetStr call. See 'FIELD

FORMATS' in 'GetStrLists' for details.

CntlCode:

This is a constant (defined in plug-in.h) defining which control code you wish to send

CNTLHALT

Halts the current Autorun sequence, making the current capture data the final capture.

CNTLSAVE

Plug-in Framework 44

© 2016 TechTools

 Forces this capture to be saved to disk (even if vetoed by other signals or autosearches.)

CNTLNOSAVE

 Vetoes saving this capture to disk.

void StartField(int64 timestamp, Data64 data, unsigned char FormatID)

This starts a new field at 'timestamp'. It auto-terminates any previous field.

'Data' is interpreted and formatted per the field format specified by 'FormatID'

void StartFrame(int64 timestamp, Data64 data, unsigned char FormatID)

This starts a new field and tags it as a start of frame. It auto-terminates any previous field or frame.

'Data' is interpreted and formatted per the field format specified by 'FormatID'

void EndField(int64 timestamp)

This marks the end of a field. Timestamp is the ending time. This is optional. Fields are

auto-terminated by the next StartField or StartFrame. The only reason to use this is if you want to

see the field terminated earlier.

void EndFrame(int64 timestamp)

This marks the end of a frame. Timestamp is the ending time. This is optional. Frames are

auto-terminated by the next StartFrame. The only reason to use this is if you want to see the

frame terminated earlier.

Control Routines

void SendControl(int64 timestamp,unsigned char CntlCode)

Sends the specified control code to the application. 'Timestamp' is currently ignored but might be

used in future versions to log the time of the control code.

See 'Development Tips->Control Fields' for usage information.

Utility Routines

void FindChannelLimits(uint64 mask, uint64 &HighestBit, uint64 &LowestBit)

A utility routine your plug-in can use to help work with raw data efficiently. See 'Data Masks, pack

and findchannellimits' below

uint64 pack(uint64 dat, uint64 mask, uint64 HighBit, uint64 LowBit)

DigiView Plug-in Guide45

© 2016 TechTools

A utility routine your plug-in can use to help work with raw data efficiently. See 'Data Masks, pack

and findchannellimits' below

<yourplugincode.cpp>

This is where all of your code goes. It should '#include' or link with the CmdParser.cpp file and supply
the functionality for the following 8 routines: They all must be defined but most of them can simple
return. Few plug-ins will need to use all of them. (See 'Development Tips->Plug-in Dataflow' for
details on when and why each are called.)

void OnLoad()

Called when the plug-in is first loaded. If multiple signals use the same plug-in, it is loaded only once.
This is used for global initialization, memory allocation, etc. You might use this for any memory
allocation that lasts for the plug-in's lifetime.

void GetStrList(int ID, vector<string> &strl)

Called multiple times each time a signal is created, enabled or its editor is opened. ID specifies which
string list is needed. These routines simply fill in 'strl' with the requested set of strings. To allow
maximum compatibility with future DigiView releases, your plug-in should return an empty list when it
receives an ID it does not understand. There are currently 6 string sets defined:

ID 0: Return the plug-in description.

These lines are displayed in the signal editor to describe this plug-in's name, purpose, copyright,

etc. For best results, keep to 4 or fewer lines.

ID 1: Return configuration options

When the user creates a signal based on your plug-in, they are presented with a signal editor

dialog to allow them to configure your plug-in. These strings describe the configuration options

and their parameters. If the plug-in is a mini-plug-in, these items are added to the pre-parser's

items and this section might be minimal or even empty. If this plug-in is a full-plug-in (based on

RAW data), this section will include every option needed to extract and interpret the data (which

channels are being used and for what purpose, the BAUD rate, clock polarity...)

Each configuration option LABEL in your plug-in should be unique. Also, if you are using one of

the built-in pre-processors, your labels should not conflict with its labels. The labels are displayed

to the user and are also used for internal reference.

(see: Configuration Editors for Available editors and their configuration syntax)

Plug-in Framework 46

© 2016 TechTools

ID 2: Field Formats

Called multiple times each time a signal is created, enabled or edited. These describe how to

format and display fields. As you generate fields in PARSE, you tag each field with an index into

this list to describe to the application how to display and format the field. You must provide at least

one field format description.

The general format is: Name,Background Color, Font Color, Display Format as described

below:

Name:

Any text that describes this format. This shows up in the TABLE views (when field names are

enabled) and in the search dialogs. Names should be unique.

Background Color:

Color used to fill the field background in the waveform view and the table cells. If left blank,

the default signal background color is used. You can use one of the predefined colors listed

below or specify a standard RGB triplet (808080 = middle gray).

Font Color:

Color used for the field text. If left blank, the default signal font color is used. You can use

one of the predefined colors listed below or specify a standard RGB triplet (0000FF = RED).

Display Format:

Describes what to print in a given field. Can contain a mixture of text and data slices. A 'Data

Slice' defines a range of bits from the provided data. The full format looks like: TEXT

{T%H:L} TEXT {T%H:L}....

The text portions can contain any printable character except '{','}' or ',' (we will probably

remove the ',' restriction by full release)

'TEXT' is an optional text string.

 It can contain any printable character except '{' or '}'

'{T%H:L}' is an optional data slice. Each part is option.

'T%'

signifies that this slice selects a string from a lookup table (returned from

GetStrList(5,lst) where 'T' is the table number. If T is omitted, then table 0 is

used. If 'T%' is omitted, then this is a DATA slice rather than a lookup slice.

The slice defines an int32 rather than a lookup string.

DigiView Plug-in Guide47

© 2016 TechTools

'H:L'

defines a range of bits to extract from the data. H is the highest bit and L is the

lowest bit. If L is omitted, it defaults to the lowest bit (0). IF H is omitted, it

defaults to the highest bit possible for this slice type (L+31 for data or L+13 for

lookups, but limited to 47).

The largest number that we can display is 32bits long. Any single DATA slice

with a range exceeding 32 bits will produce an error.

Lookup table indexes are limited to 14 bits. Any single LOOKUP slice with a

range exceeding 14 bits will produce an error.

Some DATA slice examples:

{3:1} = the number defined by bits 3->1

{3:} = {3:0}

{:12} = {43:12}

{:40} = {47:40} (limited by highest bit available)

{3} = {3:0}

{} = {31:0}

Some Lookup table slice examples:

{2%47:40} = the string in lookup table 2 at the offset

 specified by bits 47->40 (byte 5 of the data)

{%43:40} = {0%43:40}

{1%3} = {1%3:0}

{4%:30} = {4%43:30}

{3%:40} = {3%47:40} (limited by highest bit available)

 {1%3} = {1%3:0}

{1%} = {1%13:0}

Pre-defined colors

The following (non case-sensitive) color constants can be used in the Background and Font

color parameters:

 'black','brown','red','orange','yellow','green','blue','violet','gray' and 'white'

ID 3: Pre-Processor Name

Tells the application which pre-processor your plug-in needs. Most plug-ins will use one of the

built-in parsers as a pre-processor to handle low level protocol issues (like bit extraction or clock

polarity). Others will need full control. Plug-ins are responsible for all framing and formatting so

the built-in parser options dealing with those issues are removed when used a a pre-processor.

Plug-in Framework 48

© 2016 TechTools

See 'Pre-Processors' below for details

ID 4: Framework Version

Tells the application the minimum Framework version this plug-in needs. For now, there is only

one version so return '1'

ID 5: Lookup tables

Optional list of Lookup table (substitution) entries. If you are not using lookup tables, return an

empty list.

Each entry defines a single lookup/substitution string.

The general format is: table number,index,substitution string as described below:

Table Number:

A number between 0 and 31

Index:

a number between 0 and 4095 relative to the current table

Substitution String:

A string of printable characters. Can be any printable character except ',' (this restriction will

probably be removed by full release)

For optimal performance and resource usage:

The table numbers should be consecutive and start at 0. Likewise, the indexes for each table

should be consecutive and start at 0.

e.g.:

"0,0,ACK"

"0,1,NACK"

"1,0,RD"

"1,1,WT"

"1,2,ERROR"

void SetInitItem(unsigned char ID, unsigned char subID, int value)

Called multiple times immediately before each parse run to set some global parameters

ID 0: Set Timescale

DigiView uses scaled timestamps in its internal data structures. This call provides the scaling

DigiView Plug-in Guide49

© 2016 TechTools

factor so you can convert between scaled-time and real-time if needed. Many plug-ins do not

need to worry about this. See the section TIMESTAMPS & TIMESCALE in the development

hints section for details.

ID 1: First Timestamp

Tells the plug-in the timestamp of the very first raw sample. This int64 is sent in 2 calls with

subid 0 = LSB and subid 1 = MSB. The first and final timestamps are useful for timing

analysis.

ID 2: Final timestamp

Tells the plug-in the timestamp of the very last raw data. This int64 is sent in 2 calls with subid

0 = LSB and subid 1 = MSB. The first and final timestamps are useful for timing analysis.

void SetCfgItem(unsigned char ID, unsigned char subID, int value)

Called after all SetInitItem calls and before the StartData call. Called multiple times before each

parse run to set the user selected parameters for this signal. 'ID' identifies which cfg items is

being set. It is an index into the configurations strings you provided in the GetStrList call (the first

item listed is ID=0.) VALUE is a single INT32. Each type of configuration object defines what the

return values mean. If the object requires more than a single INT32 to define it settings, your

plug-in will receive multiple calls, with increasing subIDs. See the section on Configuration Option

Syntax for the return values from each option. See the SIMPLESTATE example plug-in for typical

handling.

void StartOfData()

Called after all cfg items are set and before the data starts streaming. Gives you a chance to

examine the cfg items after ALL of them have been set, make adjustments and any initializations.

void Parse(int64 timestamp,Data64 rawdata)

This is the heart of the parser. DigiView will stream EVENTS (packets of time/data information) to

your plug-in through this routine. Parse() examines the data and stream back FIELDS (packets of

time/field information) through the Data Output Routines defined above. Note this gets called on

the order of 250,000 times per signal per capture so efficiency is important.

void EndOfData()

Called at the end of each parse run for a given signal. Gives you a chance to flush any final field

information and do any clean up.

Plug-in Framework 50

© 2016 TechTools

void OnUnload()

Called just before the plug-in is removed from memory. If multiple signals are using the plug-in, it

will be called ONCE, when the final signal is disabled or deleted. You might use this to free any

resources allocated in OnLoad(). DO NOT SEND any fields back from this call. The EndOfData

call is your last chance to do that.

5.2 Pre-Processors

The built-in interpreters can be used as pre-processors for your plug-in.

Every built-in interpreter consists of 2 parts; a pre-processor and a post-processor.

Pre-Processor

The pre-processor handles the link level protocol extraction. This includes things like detecting

clock edges, honoring enables, shifting bits and detecting protocol defined start/stop or error

conditions.

Post-Processor

The post-processor is responsible for formatting and framing the data (when framing is not part of

the protocol). It determines field colors and how the data is printed in each field. Mini-plug-ins

REPLACE the internal post-processor. The output (events) from the internal pre-processor is

routed to your plug-in. Your plug-in's output (fields) are stored in the signal's internal state table.

Full plug-ins accept raw data events and generate fields directly. In effect, they replace both the

pre-processor and the post processor.

Available Pre-Processors:

ASYNC (Asynchronous)

SYNC (Synchronous)

SPI

I²C

STATE

I²S

CAN

RAW

DigiView Plug-in Guide51

© 2016 TechTools

ASYNC

This is sometimes (incorrectly) referred to as RS-232 or generally as a 'SERIAL' port. It is
characterized by a BAUD rate setting and a lack of a clock signal. Symbols (Bytes or Characters) of
data are sent as a start bit (0), followed by a pre-configured number of data bits, an optional parity bit
and a stop bit (1). Bits are blindly sampled at the BAUD rate. The symbol is 'framed' by a 0 start bit
and a 1 stop bit. Note that this use of the term 'framing' refers to framing a single symbol and is
different than our use as a protocol frame.

A protocol frame would consist of one or more of these symbols. There is no defined protocol framing
at the pre-processor level. In essence, this pre-processor is acting like a UART and your plug-in acts
like the software/firmware that gathers data from the UART and interprets it, possibly into higher levels
of framed data.

Configuration Options provided by the pre-processor

Data

Selects which physical channel to assign to the DATA bus

Baud Rate:

Selects from a list of standard BAUD rates or 'use custom'

Custom Baud (bits/sec):

The BAUD rate to use if BAUD RATE is set to 'use custom'

Data Bits

Selects the number of data bits in a character

Parity/9bit Address flag

Selects from odd,even,one,zero,non standard parity settings.

Also allows selection of 9bit addressing mode with and address

field flagged with a '1' or with a '0'

Glitch Filter (% of bit)

Select noise filter setting of none-10% of a bit width

Sync (skip transitions)

Plug-in Framework 52

© 2016 TechTools

Specifies how many transitions to ignore at the start of the buffer.

useful for syncing up when capture starts mid-character

MSb First:

Specifies that bits are received in MSB first order (VERY rare)

Events

This pre-processor uses event flags to indicate which events occurred. The data event occurs at

the middle of the start bit time and also includes any parity or framing error flags. Additional parity

and/or framing events occur later at their respective times. In the built-in post processor, we

handle the data event first (ignoring any additional parity or framing errors) and then handle any

error events as they occur, allowing us to show each as a separate field at their respective

timestamps. Setting the flags during the data event allows your plug-in to decide whether to

display the corrupt data or not.

Event Format:

 byte[0] = data (during data event..else ignore)

 byte[6] = event flags: (Break,End,Parity,Frame,X,X,Address,Data)

Data

Indicates that byte[0] holds a complete data byte. The timestamp marks the middle of the

start bit time. NOTE: any parity or framing errors associated with this byte are flagged as well.

They can be ignored if desired because any such errors will be reported later as independent,

timestamped events at their respective bit times.

Address

Indicates the parity bit position matched the user defined '9-bit address mode' level and that

byte[0] holds the gathered address byte. The timestamp marks the middle of the start bit time.

NOTE: any framing error associated with this byte is flagged as well. It can be ignored if

desired because any such error will be reported later as an independent, timestamped event

at the STOP bit time.

Framing Error

Indicates the middle of the STOP bit position was low. The timestamp is the middle of the

stop bit time.

NOTE this reference to FRAMING has nothing to do with our use of the word as defined in the

TERMINOLOGY section above. This is referring to timing framing of the character. When

DigiView Plug-in Guide53

© 2016 TechTools

you receive these framing errors, it means that the baud rate or one of the other low level

parameters is set wrong, or the transmitter and receiver (us) are out of sync.

Parity Error

Indicates the parity calculation did not match the user's selection. The timestamp is the

middle of the parity bit time.

End

Indicates the timestamp of the end of the character. Typically used to send an ENDFIELD type

field back.

Break

Indicates that the line was held low for greater than a character time

Plug-in Framework 54

© 2016 TechTools

SYNC

Synchronous is not really a protocol but a concept. At its core, it refers to serial data, strobed in by a
separate clock signal.

· The data is sampled on one or both of the clock edges.

· There are no predefined number of bits per field (symbol) or fields per frame.

· There are no predefined framing indicators. The field lengths usually vary within a frame and

are often data dependent.

There are many link-level implementations of serial protocols and many higher levels of protocols

built on top of them.

The pre-processor honors the select signal (ignores clocks while disabled/deselected) but ignores

the FrameSYNC and Field signals. If the user enables either of these, the pre-processor simply

detects transitions on the selected lines and reports them to the plug-in.

Configuration Options provided by the pre-processor

Clock

Selects which physical channel to assign to the CLOCK

Data

Selects which physical channel to assign to the DATA bus

Select

Selects which physical channel to assign to the ENABLE.

The enable can be disabled if not used

Frame SYNC

Selects which physical channel to assign to the FRAME SYNC.

This can be used to identify frame limits

The FRAME SYNC can be disabled if not used.

Field SYNC

Selects which physical channel to assign to the FIELD SYNC.

This can be used to identify field limits

DigiView Plug-in Guide55

© 2016 TechTools

The FIELD SYNC can be disabled if not used.

Clock On

Selects which edge of the clock to use to strobe in data

Select Level

Selects the active level for the Select signal

Events

This pre-processor can generate more than 1 event at a time. It sets 1 or more event flags in data

byte[6] to indicate which events occurred at this timestamp. It also updates some status bits in

that same byte to indicate the current state of some of the control signals. The event flags and

status levels are defined below:

DATAEVENT FLAG (bit 7 : 0x80)

When this bit is set, state data was strobed in at this time. The data field holds the clocked data.

SELECTEVENT FLAG (bit 6 : 0x40)

When this is set, the SELECT channel transitioned. The SELECTSTATE tells us if it went active

or inactive

FrameSYNCEVENT FLAG (bit 5 : 0x20)

When this is set, the FrameSYNC channel transitioned. The Frame SYNCLEVEL tells us the new

level

Field SYNCEVENT FLAG (bit 4 : 0x10)

When this is set, the FieldSYNC channel transitioned. The Field SYNCLEVEL tells us the new

level

SELECTSTATE (bit 2 : 0x04)

The current state of the select signal. 1 => enabled, 0=> disabled (regardless of the logic level on

the physical channel)

Frame SYNCLEVEL (bit 1 : 0x02)

The current logic level of the FrameSYNC channel. The preparser assumes nothing about the

meaning of this signal so it passes the actual logic level to you

Plug-in Framework 56

© 2016 TechTools

Field SYNCLEVEL (bit 0 : 0x01)

The current logic level of the FieldSYNC channel. The preparser assumes nothing about the

meaning of this signal so it passes the actual logic level to you

DigiView Plug-in Guide57

© 2016 TechTools

SPI

SPI is a specific synchronous protocol. It uses separate data-in and data-out lines and a common
clock. Select is optional. SPI is very common in microcontrollers due to the simplicity of the hardware
implementation. This pre-processor handles most common variations (including 2 phase clocking).

To avoid the ambiguity of choosing a master vs. slave viewpoint, the data lines are often labeled:

MISO (Master-In-Slave-Out) and MOSI (Master-Out-Slave-In). The select signal is called Slave

Select (SS). Since the data streams use a common clock, enable and field length, their fields

share a common timestamp. The pre-processor sends the timestamp and both fields (MOSI and

MISO) in each Data Event.

Configuration Options provided by the pre-parser

Clock Channel

Selects which physical channel to assign to the CLOCK

MOSI Channel

Selects which physical channel to assign to the MOSI data

MISO Channel

Selects which physical channel to assign to the MISO data

SS Channel

Selects which physical channel to assign to SS (slave select)

Clock MOSI On

Specifies which clock edge to use to strobe in MOSI data

Clock MISO On

Specifies which clock edge to use to strobe in MISO data

SS active level

Specifies the active level for the SS (slave select) signal

Field Idle Timeout (0 to disable)

A new field is started if no new bits are seen for more than the specified time.

Set to 0 to disable.

Plug-in Framework 58

© 2016 TechTools

Skip Bits (to sync)

Specifies how many bits to ignore at the start of the buffer.

Useful for syncing up when capture starts mid-field

Field Length (bits)

Specifies the data field length from 4 to 24 bits.

Events

Event format:

 bytes[2-0] = MISO data

 bytes[5-3] = MOSI data

 bytes[6] = event flags

The pre-processor uses event flags to indicate which events occurred. Multiple flags (in limited

combinations) can be set at the same time.

Data flag: 0x80

Data fields contain a data capture. Can be accompanied by a Partial flag and/or a SSEN flag. Will

never occur with an End or SSDIS flag.

Partial flag: 0x40

Indicates the captured data is incomplete. It was interrupted before gathering the full specified

number of bits (usually by SS going inactive or a timeout). This flag never occurs without a Data

flag; It is a modifier to the Data Flag. Your plug-in can decide whether to tag these differently,

ignore them or treat them like normal data.

SSEN flag: 0x20

SSEN flag indicates the Slave Select (SS) signal transitioned to the enabled state. SSEN

transitions can occur alone or with a Data flag.

SSDIS flag: 0x10

SSDIS flag indicates the Slave Select (SS) signal transitioned to the disabled state. SSDIS

transitions can occur alone or with an End flag.

End flag: 0x08

DigiView Plug-in Guide59

© 2016 TechTools

Marks the end time of a field. The data fields are meaningless. Can occur alone or with a SSDIS

flag.

Plug-in Framework 60

© 2016 TechTools

I2C

Extracts all I2C events including START,STOP,ACK,NAK. Also sends separate events for special
codes, address, R/W and data fields. Note that framing is inherent in this protocol so the preparser
sends START and STOP events to your plug-in.

Configuration Options provided by the pre-processor

Clock(SCL)

Selects which physical channel to assign to the CLOCK

Data(SDA)

Selects which physical channel to assign to the DATA

Glitch Filter

Selects the amount of noise filtering. Should be set to 50ns for low

speed operation and reduced for faster speeds

Skip Bits (to sync partial frame)

Specifies how many bits to ignore at the start of the buffer.

Useful for syncing up when capture starts mid-frame

Decode Addr 000-0001-d as

Selects between the standard I2C decoding for this address range or decoding it as

normal 7 bit devices.

Decode Addr 000-001X-d as

Selects between the standard I2C decoding for this address range or decoding it as

normal 7 bit devices.

Decode Addr 111-11XX-d as

Selects between the standard I2C decoding for this address range or decoding it as

normal 7 bit devices.

Decode HS Master Codes as

Selects between the standard I2C decoding for this address range or decoding it as

normal 7 bit devices.

DigiView Plug-in Guide61

© 2016 TechTools

Decode 10bit Codes as

Selects between the standard I2C decoding for this address range or decoding it as

normal 7 bit devices.

Truncated fields

Specified whether to show truncated/partial fields or not. 1 bit truncated fields

common and unavoidable so the options include showing only if > 1 bit.

Events

The built-in I2C preparser generates 16 events. A single event is sent at a time. The event code

is placed in byte[6] and is encoded as shown below:

START (0)

Generated whenever the start condition is detected on the bus.

START-BYTE (1)

Generated when the first byte holds the special code: 0000 0001. Under normal operation, the

plug-in should expect to receive a NAK event followed by a Repeated start (Sr) event and then any

normal ADDRESS event.

ADDRESS (2)

Generated for all general 7 bit addresses in the first byte. byte[0] contains the entire 8 bit value of

the first field. This includes the 7 bit address in the upper 7 bits and the direction bit in the LSB.

One would normally ignore the direction bit and just grab the address at this point. A DIR event

will follow shortly to timestamp the direction bit. It will include the same data[0] as this call,

allowing you to handle the address and/or direction in either/both calls.

GENERAL-CALL (3)

Generated when the GENERAL-CALL code (0000 0000) is detected in the first byte. Under

normal operation, the plug-in would then expect to receive an ACK event followed by the

general-call sub code in a DATA event.

CBUS (4)

Generated when the first byte contains the CBUS code (0000 001X). Following this event, the

preparser ignores all bus activity until a STOP condition is detected. The plug-in will receive a

STOP event when the CBUS activity completes.

Plug-in Framework 62

© 2016 TechTools

HSMASTER (5)

Generated when the special HSMASTER code (0000 1XXX) is detected in the first byte. The XXX

is the master's code. Data[0] contains the full 8 bit code. Under normal operation the plug-in would

expect this to be followed by a NAK event, a repeated start event and then a normal 7bit address

event. High speed operations remains in effect until a STOP event is received.

RESERVED (6)

Generated when an address within the 2 reserved ranges is detected in the first byte. data[0]

contains the address and direction bit. A DIR event will follow with direction bit's timestamp and the

same data.

10BITADDR (7)

Generated when the special 10Bit Code (1111 0XX) is detected in the upper 7 bits of the first byte.

Notice the XX bits are the upper 2 bits of a 10 bit address. The remaining 8 bits come from the

next byte or are assumed from the context. The pre-parser does not look at the direction bit, the

next byte and/or the presence of a Repeated start to decode the actual 10 bit address. It simply

reports the detection of this code. Of course, additional events will follow to report DIR, data and

start/repeated starts so that a plug-in could determine the full 10 bit address just as a slave device

would.

DIR (8)

Generated for the Direction bit. The LSB of data[0] indicates the bit value; 1=> Read, 0=> Write.

The upper 7 bits of data[0] contain the 7bit address this DIR event refers to. It can be ignored as it

was sent to the ADDRESS event earlier.

ACK/NAK (9)

Generated for the Ack/Nak bit. The LSB of data[0] indicates the bit value; 1=> NAK, 0=> ACK

DATA (10)

Generated at the start of each byte of data in the payload. data[0] contains the data.

STOP (11)

Generated whenever the stop condition is detected on the bus.

Truncated (12)

Generated when a partial byte of data was received.

DigiView Plug-in Guide63

© 2016 TechTools

RESTART (13)

Generated whenever the start condition is detected on the bus WITHOUT a preceding STOP

condition. This is called a Repeated Start.

FIELD-IDLE (14)

Generated to timestamp the end of a byte of data. Usually used to allow display of idle periods

between the last data bit and the ACK.NAK bit.

Plug-in Framework 64

© 2016 TechTools

STATE

Sends the data captured at each clock edge as an event. Also send SELECT and SYNC events (if
defined). The pre-processor honors the select signal (ignores clocks while disabled/deselected) but
ignores the SYNC signal. If the user enables the SYNC channels, the pre-processor simply detects
transitions on that line and reports them to the plug-in.

Configuration Options provided by the pre-processor

Clock Channel

Selects which physical channel to assign to the CLOCK

Data Channels

Selects which physical channels to assign to the DATA bus

Enable Channel

Selects which physical channel to assign to the ENABLE.

The enable can be disabled if not used

Frame SYNC Channel

Selects which physical channel to assign to the FRAME SYNC.

This can be used to identify frame limits

The FRAME SYNC can be disabled if not used.

Clock On

Selects which edge of the clock to use for strobing in data

Enable Level

Selects the active level for the Enable signal

Events

This preparser can generate more than 1 event at a time. It sets 1 or more event flags in data

byte[6] to indicate which events occurred at this timestamp. It also updates some status bits in

that same byte to indicate the current state of some of the control signals. The event flags and

status levels are defined below:

DATAEVENT FLAG (bit 7 : 0x80)

When this bit is set, state data was strobed in at this time. The data field holds the clocked data.

DigiView Plug-in Guide65

© 2016 TechTools

SELECTEVENT FLAG (bit 6 : 0x40)

When this is set, the SELECT channel transitioned. The SELECTLEVEL tells us if it went active or

inactive

SYNCEVENT FLAG (bit 5 : 0x20)

When this is set, the SYNC channel transitioned. The SYNCLEVEL tells us the new level

SELECTLEVEL (bit 2 : 0x04)

The current state of the select signal. 1 => enabled, 0=> disabled (regardless of the logic level on

the physical channel)

SYNCLEVEL (bit 1 : 0x02)

The current logic level of the SYNC channel. The preparser assumes nothing about the meaning

of this signal so it passes the actual logic level to you

Plug-in Framework 66

© 2016 TechTools

I2S

The I2S built-in pre-parser is available beginning with DigiView Version 8.1.

The I2S decoder will pre-parse the data based on the configured options below. Since this protocol
does not have the typical framing of multiple fields your plug-in will only receive two event types (Left
Channel, Right Channel). The data for each event, the type of event and the starting of the next event
is based on the Word Length and Word Select options.

Configuration Options provided by the pre-processor

Data Channel

Selects the channel to use for DATA.

Clock Channel

Selects the channel to use as the CLOCK.

WS Channel

Selects the channel to use as the Word Select (WS). The word select determines whether the

data is for the Left or Right audio channel.

Convert Data to Unsigned

Selects whether the preprocessor should treat the data as signed and convert it to unsigned when

showing values or plotting.

Word Length

Selects the bit width for the word length from 4 bits to 32 bits. This setting determines the length of

each field.

Events

Event Format:

Byte[7] = Event Type

Bytes[3:0] = Value - (32 bits)

Left Channel (Byte[7] = 0):

Bytes[3:0] hold the Left Audio Channel data. Use StartField() to format.

Right Channel (Byte[7] = 1):

Bytes[3:0] hold the Right Audio Channel data. Use StartField() to format.

DigiView Plug-in Guide67

© 2016 TechTools

CAN Bus

The CAN BUS built-in pre-parser is available beginning with DigiView Version 8.1.

Extracts all CAN events including Active Error Frames, Overload Frames, Bit Stuffing Errors and Form
Errors. Also sends separate events for each field including control bits, delimiters, Extended ID and
CRC. Note that framing is inherent in this protocol so the preparser sends the SOF event at the
beginning of a frame and will send the End or IDLE event to terminate the frame.

Configuration Options provided by the pre-processor

Data Channel

Selects which physical channel to capture and decode.

Bit Rate/Duration & Scale:

Specify a value for the Bit Rate or the Bit Duration, then select a scale for the value entered. Scale

selections include Nano seconds (ns), Micro seconds (us), Milli seconds (ms), Baud, KiloBaud

(KBaud) and MegaBaud (MBaud). Note that the value must be an integer (no floating point.) To

specify something with a decimal point, select the next lowest range and enter a whole number.

For example, 115.2 KBaud would be entered as 115200 Baud and 12.31us would be entered as

12310ns.

Sample Point (%bit)

Specifies where we should sample the data within each bit cell as a percentage of the bit width.

This defaults to mid-bit (50%) and can be adjusted to account for bus propagation delays,

transceiver delays, bandwidth limitations, etc. This roughly corresponds to the combined settings

of the SYNC_SEG, PROP_SEG and PHASE_SEG_1 mentioned in the CAN specification.

Alternatively, it could be viewed as the total bit width - PHASE_SEG_2.

Sync Jump Width (%bit)

Specifies the percentage of a bit width to allow for resynchronization adjustments. This

corresponds to the SJW parameter in the CAN specification.

The CAN specification allows for a wide tolerance on node oscillators. This is accomplished by

requiring that nodes resynchronize on passive->dominate edges. The receivers compare the

actual timing of these edges with the ideal timing at the specified baud rate and then make

adjustments to their internal timers to resynchronize with the incoming data. This parameter

specifies the maximum adjustment we will make when resynchronizing.

Increasing this number increases our ability to properly decode packets involving nodes with low

Plug-in Framework 68

© 2016 TechTools

accuracy oscillators at the expense of increased noise sensitivity. Lower numbers improve noise

rejection but reduces our ability to work with nodes with low accuracy oscillators. You usually set

this lower if all nodes use crystal oscillators for their baud rate reference, and higher if any of them

use ceramic resonators or other low accuracy sources for their baud rate references.

Be aware that the (SAMPLE-POINT + SJW) should be less than 100% and that (SAMPLE-POINT

- SJW) should be greater than 0.

Filter Glitches <= (%bit)

Specifies filtering of pulses that are less than or equal to the specified percentage of the Bit width.

DigiView has a much higher bandwidth than most CAN receivers so it is capable of capturing

glitches or noise pulses that normal receivers might not even see. Also, many CAN receivers

have different levels of filtering available. This option lets you tell us how relatively good we should

be at rejecting noise pulses. A setting of 0 tells us to process full bandwidth data with poor

rejection. Increasing this setting makes us simulate higher immunity parts. Selection range is from

0% to 10%.

Events

The built-in CAN preparser generates 25 Event Types which are identified in byte[7]. If an error
occurs or an invalid value is detected, byte[6] will be non-zero. Bytes[5:0] can contain up to 48 bits
of data. The content of Data will depend on the event.

Event Format:

Byte[7] = Event Type

Byte[6] = Flags - (see the Event Type tables for flags supported by each event)

Form Error (bit 0 : 0x01)

Invalid Value (bit 1 : 0x02)

Bit Stuffing Error (bit 2 : 0x04)

Bytes[5:0] = Data - Contains up to 48 bits of data. Contents will be one of the following
based on the event:

1. Field Value - Will contain the value of the field event.

Applicable Events: Base ID, EXTID, DLC, CRC

2. Bit Count - For multi-bit events that have no relevant data. Will contain the
number of successive bits denoting the event. If the number of bits or state
(Dominate or Recessive) is incorrect, the Form Error flag is set in Byte[6].

Applicable Events: EOF, EF-D, OL-D, OVERLOAD, ERROR, END, IDLE,
IFS-I, BITSTUFF

DigiView Plug-in Guide69

© 2016 TechTools

3. Bit state - Denotes the state of single bit field events. 0 = Dominate, 1 =
Recessive. If the state is wrong for the event type, the Form Error flag is set in
Byte[6] for appropriate events.

Applicable Events: SOF, SRR, RTR, IDE, R1, R0, CRC-D, ACK, NAK,
ACK-D

Field Event Types - Byte [7] =

Use StartField() to format Field event types. EndField() is not required as any field will
automatically terminate when the next StartField(), StartFrame() or EndFrame() is called or
when the end of data is reached. If a form error occurs, the Error flag will be set for applicable
events.

Byte
[7]

Event Information Flag
Support

Output

0 Unknown
Field

reserved StartField()

1 Base ID Data[0:1] holds the 11 bit Frame ID. StartField()

2 SRR Control bit - Substitute Remote Request Form Error StartField()

3 RTR Control bit - Remote Transmission
Request

Data[0] = 0, RTR of Data Frame.
Data[0] = 1, RTR of Remote Frame.

StartField()

4 IDE Control Bit - Identifier Extension bit StartField()

5 R1 Control bit - Reserved 1 (extended
frames only)

Form Error StartField()

6 R0 Control bit - Reserved 0 Form Error StartField()

7 EXTID Extended ID
Data[2:0] holds the 18 bit Extended ID.

StartField()

8 DLC Data Length Count
On DATA FRAMES, Data[0] should
specify the number of data events to
follow. A maximum of 8 Data events
will be sent.

REMOTE FRAMES do not have data
events. Data[0] specifies the length of
data requested. The CRC event should
follow the DLC event in Remote
Frames.

Current specifications limit DLC to a
maximum value of 8, so the Invalid
Value flag is set when this value is

Invalid
Value

StartField()

Plug-in Framework 70

© 2016 TechTools

Byte
[7]

Event Information Flag
Support

Output

greater.

9 Data Data[0] is a data byte. StartField()

10 CRC Cyclic Redundancy Code
Data[1:0] holds the CRC sequence.

StartField()

11 CRC-D Delimiter - CRC Form Error StartField()

12 ACK ACK slot - CRC match
Acknowledgement

StartField()

13 NAK ACK slot - No CRC match
Acknowledgement

StartField()

14 ACK-D Delimiter - ACK slot Form Error StartField()

15 EOF Delimiter - End of Frame
Data[5:0] holds Bit Count

Form Error StartField()

16 EF-D Delimiter - for Error Frames
Data[5:0] holds Bit Count

Form Error StartField()

17 OL-D Delimiter - for Overload Frames
Data[5:0] holds Bit Count

Form Error StartField()

Note: Each event is sent in chronological order and already has a unique Timestamp. If adding
your own field by splitting events into multiple StartField() calls, do not use a previous or
duplicate time stamp or one that is greater than the event's timestamp. Make certain each
field's timestamp is (> last) and (<= current).

Frame Event Types - Byte [7] =

Use StartFrame() or EndFrame() accordingly. If an error occurred, the Error flag will be set for
applicable events. Events IFS-I and BITSTUFF are always an error.

Byte
[7]

Event Information Flag
Support

Output

18 SOF Start Of Frame StartFrame()

19 OVERLOAD Overload Frame, Data[5:0] holds Bit
Count

Form Error StartFrame()

20 ERROR Error Frame, Data[5:0] holds Bit Count Form Error StartFrame()

21 END Frame end (for formatting purposes).
Sent when IFS (Inter-Frame Space)
completed without a Form Error or being
interrupted by an Overload Frame.

EndFrame()

DigiView Plug-in Guide71

© 2016 TechTools

Byte
[7]

Event Information Flag
Support

Output

Data[5:0] holds Bit Count

22 IDLE Frame end (for formatting purposes).
Sent while resynchronizing and finding a
BUS IDLE condition.

Data[5:0] holds Bit Count

EndFrame()

23 IFS-I Inter-Frame Space Interruption
(interruptions other than by Overload or
Error Frames).

Data[5:0] holds Bit Count

Form Error
(always
set)

StartFrame()

24 BITSTUFF Bit Stuffing Violation.
Data[5:0] holds Bit Count

Bit Stuffing
(always
set)

StartFrame()

Note: The IDLE event is almost equivalent to the END event. Both events indicate a
termination of the frame but under different circumstances. In either event, if you want to see
the "idle" period between frames, use the EndFrame() routine to terminate it. This is not a
requirement since all frames automatically terminate when a new frame begins or the end of
data is reached.

Plug-in Framework 72

© 2016 TechTools

RAW

Sends an event for the very first and last data samples as well as any time any of the plug-in's defined
channels transition.

Configuration Options provided by the pre-processor :

NONE. The plug-in takes full responsibility for specifying all needed parameters/options.

Events

Every event is a RAW DATA event. The data parameter contains a snap-shot of the data

channels at the timestamp. Your plug-in uses the masks returned from channel-select objects to

extract the pieces of data you are interested in.

5.3 Configuration Editors

When the user creates a signal or clicks on the signal name, a signal editor opens. This editor
contains a number of configuration editors, allowing the user to configure the signal parser. These
editors allow the user to specify which channels are used and for what purpose. They also allow
setting things like baud rates, clock edges, field sizes; whatever you want the user to be able to
configure.

When a plug-in is loaded, the application will generate a number of GetStrList() calls to the plug-in to
retrieve information about which editors the plug-in wants to display and their parameters.

Each time the application wishes to refresh the data interpretation, it makes a number of SetCfgItem()
calls to the plug-in to inform it about the user's configuration choices.

The following sections document the available configuration editors, their syntax and return values.

 Check Box

Radio Group

Combo Box

 Integer Editor

Time Editor

 Spinner

 Slider

Channel Select

Check box

Example: "Show Field Idles,checkbox,true"

GetStrList() syntax: Label,checkbox,default

default is the initial state. It can be 0,1,true,false.yes or no

DigiView Plug-in Guide73

© 2016 TechTools

SetCfgItem() values:

subID 0: 1 for checked, 0 for unchecked

Radio group

Example: "Truncated fields,radio,0,Ignore,Show if > 0 bits,Show if > 1 bits"

GetStrList() syntax: Label,radio,default,item0,item1...

default is the item index to select initially.

item0,item1... are the options

SetCfgItem() values:

subID 0: 0-based index of selected item

Combo box

Example: "Baud Rate:,combo,2,4800,9600,19.2K,38.4K"

GetStrList() syntax: Label,combo,default,item0,item1...

default is the item index to select initially.

item0,item1... are the options shown in the pull-down

SetCfgItem() values:

subID 0: 0-based index of selected item

Integer Editor

Example: "Custom Baud (bits/sec):,edit,115200"

Plug-in Framework 74

© 2016 TechTools

GetStrList() syntax: Label,edit,default

default: the contents of the edit box. It can be 1 or more comma separated INT32s

SetCfgItem() values:

subID 0: the 1st integer in the list

subID 1: the 2nd integer in the list

... for each integer up to 32 total

Time Editor

Example: "Frame IDLE TIMEOUT (0 to ignore):,timeedit,0"

GetStrList() syntax: Label,timeedit,default

default is the initial time in ns

SetCfgItem() values:

subID 0: Lower 32bits of the entered time (in ns)

subID 1: Upper 32bits of the entered time (in ns)

Spinner

Example: "Sync (skip transitions),spinner,3,0,32,1"

GetStrList() syntax: Label, spinner,default,min,max,step

Default: initial value (must be >= MIN and <= Max

Min: minimum value returned

Max: maximum value returned

Step: step size (spinner snaps to these increments)

DigiView Plug-in Guide75

© 2016 TechTools

SetCfgItem() values:

subID 0: Spinner position/value

Slider

Example: "Glitch Filter (% of bit),slider,10,0,10,1"

GetStrList() syntax: Label, slider,default,min,max,step

Default: initial value (must be >= MIN and <= Max

Min: minimum value returned

Max: maximum value returned

Step: step size (spinner values increment by this value)

SetCfgItem() values:

subID 0: Slider position/value

Channel Select

Example: "MOSI Channel,2,1,1,true,true"

GetStrList() syntax: Label,chanselect,default value,
min,max,showinvert,showdisable

default: a 64bit mask for the default channel selection

min: minimum number of channels the user is allowed to select (> 0)

max: maximum number of channels the user is allowed to select (<= #Channels)

showinvert: 1,true, or yes => show the invert option else hide it

showdisable: 1,true, or yes => show the disable option else hide it

SetCfgItem() values:

subID 0: flags.

 Bit 0 is the INVERT status (1 => checked)

 Bit 1 is the DISABLE status (1 => checked)

Plug-in Framework 76

© 2016 TechTools

subID 1: Lower Int32 of the selection mask

subID 2: Upper Int32 of the selection mask

Plug-in Examples

Part

VI

Plug-in Examples 78

© 2016 TechTools

6 Plug-in Examples

The examples are not production ready code. They are intended to demonstrate how to write

plug-ins. As such, they focus on clarity more than completeness. Additionally, some of them were

tested with manufactured data. For example, the Track2 plug-in is written from a specification and

tested with generic SYNC signals. We did not actually test it against captured credit card swipes.

The point is that these examples are focused on demonstrating the mechanics of writing plug-ins.

It is very likely they would require additional modifications for actual use but provide a solid,

working baseline.

6.1 EchoState

A minimal, yet functional plug-in in 24 lines of code. It is based on the STATE pre-processor. It

simply prints each state in YELLOW.

6.2 SimpleState

A mini plug-in based on the STATE pre-processor. Demonstrates adding a few simple user

options, performing framing and simple formatting.

6.3 RawState

A full plug-in implementing a basic state parser. Demonstrates parsing raw data events, edge

detection, and use of FindChannelLimits and pack().

6.4 I2CBase

A mini plug-in based on the I2C pre-processor. It is an exact replacement for the internal

post-processor. It demonstrates using multiple field formats, lookup tables, framing and

zero-length fields. This is a good starting point for implementing higher level protocols or project

specific substitutions (addr 0x5 = 'D/A' or 'U3'...).

6.5 FrameChar

A mini plug-in based on the ASYNC pre-processor. Starts a new frame whenever a specific

character is received. Uses a specific escape character to allow the start-of-frame character to

appear in the payload.

DigiView Plug-in Guide79

© 2016 TechTools

6.6 HalfDuplex

A hybrid plug-in based on the ASYNC pre-processor. It specifies a new signal (Direction) to

watch. The Direction line determines which end of the bus is sending. The plug-in modifies the

field formatting to indicate which end of the link sent the data. It also starts a new frame each time

the bus changes directions.

6.7 AsyncWD

A mini plug-in based on the ASYNC pre-processor. In addition to formatting and printing each

ASYNC character, it looks for excessive bus dead time. If the time between characters exceeds

the user specified value, it forces a save of this capture, and/or halts any auto-run sequence.

Demonstrates use of TimeScale, calculating timing, and use of control fields. Also shows inserting

non-data related fields into the data display; very useful for auto-searches.

6.8 Track2-full

A full plug-in to decode track 2 from magnetic strip cards (like credit cards). Demonstrates

channel extraction, edge detect, using channel invert option, and parity calculation.

6.9 SPI-DAC8045

A mini-plug-in based on the SPI pre-processor. This customizes the SPI parser to decode the

data sent to a Nation Semiconductor DAC8045S085. Demonstrates use of multiple data slices

and lookup tables to do in-place data decoding. It is less pretty than a full decoder, but is still very

functional and easy.

6.10 RawDAC8045

A full plug-in to parse the Nation Semiconductor DAC8045S085. Demonstrates edge detection,

framing, idle fields, lookup tables and maintaining context through static vars and a state-machine.

6.11 GroupFilter

A full plug-in to demonstrate glitch filtering across a group of signals.

Disclaimers and Restrictions

Part

VII

DigiView Plug-in Guide81

© 2016 TechTools

7 Disclaimers and Restrictions

Use of this Plug-in Developer's Kit and the sample source provided constitute acceptance of the
following disclaimers and restrictions:

7.1 No Warranties

This software is provided 'As Is', without any express or implied warranty of any kind, including but

not limited to any warranties of merchantability, noninfringement, or fitness of a particular purpose.

TechTools does not warrant or assume responsibility for the accuracy or completeness of any

information contained within this software.

7.2 Limits on Liability

In no event shall TechTools be liable for any damages (including, without limitation, lost profits,

business interruption, or lost information) rising out of use of or inability to use this software, even

if advised of the possibility of such damages. In no event will TechTools be liable for loss of data

or for indirect, special, incidental, consequential (including lost profit), or other damages based in

contract, tort or otherwise. TechTools shall have no liability with respect to the content of the

software or any part thereof, including but not limited to errors or omissions contained therein,

libel, infringements of rights of publicity, privacy, trademark rights, business interruption, personal

injury, loss of privacy, moral rights or the disclosure of confidential information.

7.3 Use and Redistribution

You may use the files included in this Plug-in Developers Kit to develop DigiView plug-ins for your own
use. You may also distribute your derived works as long as the copyrights, disclaimers and restrictions
are retained in the source files and followed. Any other use is prohibited without express, written
permission from TechTools. This covers all files not explicitly documented as 'NOT
REDISTRIBUTABLE'. Should a source file not contain a statement listing the disclaimers and allowed
usage, the following must be inserted into the file before distribution:

This source file is part of the TechTools Plug-in Development Kit.
Copyright (c) 2011 by TechTools

DISCLAIMERS:
 - NO WARRANTIES
 This software is provided 'As Is', without any express or implied
 warranty of any kind, including but not limited to any warranties
 of merchantability, noninfringement, or fitness of a particular
 purpose. The Copyright holders do not warrant or assume responsibility
 for the accuracy or completeness of any information contained within
 this software.
 - LIMITATION OF LIABILITY
 In no event shall the copyright holders be liable for any damages
 (including, without limitation, lost profits, business interruption,

Disclaimers and Restrictions 82

© 2016 TechTools

 or lost information) rising out of use of or inability to use this
 software, even if advised of the possibility of such damages. In no
 event will the copyright holders be liable for loss of data or for
 indirect, special, incidental, consequential (including lost profit),
 or other damages based in contract, tort or otherwise. The copyright
 holders shall have no liability with respect to the content of the
 software or any part thereof, including but not limited to errors or
 omissions contained therein, libel, infringements of rights of publicity,
 privacy, trademark rights, business interruption, personal injury,
 loss of privacy, moral rights or the disclosure of confidential
 information.

Use and redistribution of this software or of derived works, in source or
compiled form is permitted as long as the following restrictions are observed:

- The above copyright(s), disclaimers and these restrictions are retained in the
 source files and, if distributed in compiled form, must be duplicated in
 documentation or other materials and provided with the distribution.
- The derived work is used exclusively as a plug-in to the TechTools DigiView
 software, to process data captured with TechTools hardware.
- The copyright holders' names may not be used to endorse or to promote any
 product or derived works.

Any other use is prohibited without express, written permission from TechTools.

email: support@tech-tools.com, sales@tech-tools.com

web: www.tech-tools.com Voice:972-272-9392 FAX: 972-494-5814

mailto:support@tech-tools.com
mailto:sales@tech-tools.com
http://www.tech-tools.com

Contact Information

Part

VIII

Contact Information 84

© 2016 TechTools

8 Contact Information

You can contact TechTools at any of the following numbers:

email: support@tech-tools.com, sales@tech-tools.com

web: www.tech-tools.com

Voice: 972-272-9392

FAX: 972-494-5814

mailto:support@tech-tools.com
mailto:sales@tech-tools.com
http://www.tech-tools.com

DigiView Plug-in Guide85

© 2016 TechTools

Index
- 1 -
10 bit address 60

10Bit Code 60

10BITADDR (7) 60

- 7 -
7 bit address 60

- 9 -
9bit addressing 51

- A -
access denied 15

ACK 60

ACK/NAK (9) 60

Active Channels 2

Address 51

ADDRESS (2) 60

ASYNC 51

AsyncWD 79

attach debugger 32

attach to process 35

audio channel 66

Auto-Install 13

AUTORUNHALT 26

- B -
Background Color 46

Baud Rate 22, 51

Bit Rate/Duration & Scale 67

Bit Stuffing Error 67

Break 51

built-in interpreter 50

- C -
C++ 10

CAN Bus 67

CBUS (4) 60

Channel Select 75

Channels 2

Check box 72

Clock 54

Clock Channel 57, 64, 66

Clock MISO On 57

Clock MOSI On 57

Clock On 54, 64

Clock(SCL) 60

CmdParser.cpp 42

CntlCode 43

CNTLHALT 43

CNTLNOSAVE 43

CNTLSAVE 43

Combo box 73

Common errors 38

Configuration Editors 72

Configuration Options 45, 51, 54, 57, 60, 64, 72

Configuration string syntax 38

Contact Information 84

Control Fields: Soft Triggers and Filtering 26

Control Routines 44

copyright 81

CPPExamples 28

CPPExamples.sln 11

Creating your own project 13

Custom Baud 51

Customize the Plug-in 15

- D -
Data 43, 51, 54

DATA (10) 60

Data Bits 51

Data Channel 66

Data Channels 64

Data flag: 0x80 57

Data Output Routines 43

DATA slice examples 46

Data(SDA) 60

DATAEVENT FLAG (bit 7 : 0x80) 54, 64

debugger 32

Decode 10bit Codes as 60

Decode Addr 000-0001-d as 60

Decode Addr 000-001X-d as 60

Decode Addr 111-11XX-d as 60

Index 86

© 2016 TechTools

Decode HS Master Codes as 60

DIR (8) 60

DISCLAIMERS 81

Display Format 46

Documenting your plug-in 30

- E -
EchoState 78

ENABLE 64

Enable Channel 64

Enable Level 64

Enable/Disable 20

End 51

End flag: 0x08 57

EndField 25, 38, 43

EndFrame 25, 38, 43

EndOfData 19, 49

Event 2

Event format 51, 57

Events 51, 54, 57, 60, 64, 72

Examples 78

Examples structure 28

Expert settings 33

- F -
fatal error LNK1123 15

Field 2

Field SYNCLEVEL (bit 0 : 0x01) 54

Field Chronology 38

Field Formats 46

Field Idle Timeout (0 to disable) 57

Field Length (bits) 57

Field SYNC 54

Field SYNCEVENT FLAG (bit 4 : 0x10) 54

Field_Chronology 38

FIELD-IDLE (14) 60

Fields 24

FieldSYNC 54

FIFO 38

Filter Glitches 67

Filtering 26

Final Build 30

Final timestamp 48

FindChannelLimits 24, 44, 78

First Build 11

First Timestamp 48

Font Color 46

FORCESAVE 26, 27

Form Error 67

FormatID 43

Frame 2

Frame SYNC 54

Frame SYNC Channel 64

Frame SYNCLEVEL (bit 1 : 0x02) 54

FrameChar 78

Frames 25

FrameSYNC 54

FrameSYNCEVENT FLAG (bit 5 : 0x20) 54

Framework Version 48

framing 78, 79

Framing Error 51

freeze 37

frozen 35

Full Plug-ins 4

- G -
GENERAL-CALL (3) 60

GetStrList 19, 45

Glitch Filter 51, 60

GroupFilter 79

- H -
'H:L' 46

HalfDuplex 79

HALT 26

Hidden Dialogs 35, 37

HSMASTER (5) 60

Hybrid Plug-ins 4

- I -
I2C 60

I2CBase 78

I2S 66

IDLE 25

Ignoring data.bytes[7] 38

Install a Plug-in 11

Install Tool Chain 10

Integer Editor 73

DigiView Plug-in Guide87

© 2016 TechTools

- L -
LIABILITY 81

locked-up 35

lockups 40

Logging 40

Lookup table slice examples 46

lookup tables 48, 79

- M -
master 57

Mini Plug-ins 4

MISO 57

MISO Channel 57

modal 37

MOSI 57

MOSI Channel 57

MSb First 51

- N -
NAK 60

new protocols 5

NOT SAVE 26

- O -
On Configuration Change 20

On New Data 19, 20

On Signal Create 19

On Signal Delete 20

On Signal Disable 20

On Signal Enable 20

OnLoad 19, 45

OnUnload 20, 50

- P -
pack 24, 44

parity calculation 79

Parity Error 51

Parity/9bit Address flag 51

Parse 49

Partial flag: 0x40 57

Plug-in Capabilities 5

Plug-in Dataflow 19

plug-in description 45

Plug-in Directory 27

Plug-in Framework 42

plugin.h 42

Post-Build Event 13

Post-parser 2

post-processor 2, 50

Pre-defined colors 46

pre-processor 2, 47

Pre-Processors 50

Propagation Delay 67

Protocol layers 5

- R -
R/W 60

Radio group 73

RAW 72

RAW DATA 24, 72

RawDAC8045 79

RawData Events 2

RawState 78

Redistribution 81

RESERVED (6) 60

RESTART (13) 60

Restrictions 81

RTF files 30

run-time behavior 5

Runtime DLLs 30

- S -
same timestamp 38

Samples 2

SAVE 26

Searches and Triggers 38

SELECT 54, 64

Select Level 54

SELECTEVENT FLAG (bit 6 : 0x40) 54, 64

SELECTLEVEL 64

SELECTLEVEL (bit 2 : 0x04) 64

SELECTSTATE 54

SELECTSTATE (bit 2 : 0x04) 54

SendControl 44

SendField 19

Index 88

© 2016 TechTools

Set Timescale 48

SetCfgItem 19, 49

SetInitItem 19, 48

Signal 2

Signal Definitions 20

Signal Interpreter 2

SimpleState 78

Skip Bits (to sync partial frame) 60

Skip Bits (to sync) 57

slave 57

Slider 75

soft triggers 26

Solution Configurations 33

Source Files 42

SPI 57

SPI-DAC8045 79

Spinner 74

SS active level 57

SS Channel 57

SSDIS flag: 0x10 57

SSEN flag: 0x20 57

START 60

START (0) 60

START-BYTE (1) 60

StartField 25, 38, 43, 66

StartFrame 25, 38, 43

StartOfData 19, 49

STATE 64

State machines 21

static variables 21

STOP 60

STOP (11) 60

Streaming and Buffering 38

Streaming and Context 21

Substitution String 48

SYNC 51, 54, 64

SYNCEVENT FLAG (bit 5 : 0x20) 64

Synchronous 54, 57

SYNCLEVEL 54, 64

SYNCLEVEL (bit 1 : 0x02) 64

- T -
'T%' 46

Table Number 48

Task Manager 37

Terminology 2

Time Editor 74

timeout 22, 32

timeouts 40

TimeScale 22

timestamp 22, 38, 43, 57

time-travel 38

Track2-full 79

Truncated (12) 60

Truncated fields 60

tutorial.dvdat 11

Types of Plug-ins 4

- U -
UART 51

Unexpected formatting 38

Unsigned 66

Utility Routines 44

- V -
Verify the Plug-in 11

VETO 27

Vetoes 43

VETOSAVE 26, 27

Visual Studio Express 10

- W -
WARRANTIES 81

Word Length 66

Word Select 66

WS Channel 66

- Y -
yourplug-incode.cpp 45

- Z -
Zero Length Fields 25

(972) 272-9392, www.tech-tools.com

	Plug-in Overview
	Terminology
	Types of Plug-ins
	Plug-in Capabilities
	Implementation

	Getting Started
	Install Tool Chain
	Build an Example Plug-in
	Install and Verify a Plug-in
	Create a New Plug-in
	Customize the Plug-in
	Next Steps

	Development Tips
	Plug-in Dataflow
	On Signal Create
	On New DATA
	On Signal Disable
	On Signal Delete
	On Signal Enable
	On Configuration Change

	Enable/Disable
	Streaming and Context
	Timestamps and TimeScale usage
	Future Compatibility
	Data masks, Pack and FindChannelLimits
	Fields
	Zero Length Fields
	Frames
	Control Fields: Soft Triggers and Filtering
	AUTORUNHALT
	FORCESAVE
	VETOSAVE

	Finding Your Documents Folder
	PDK Directory Layout
	Final Build
	Documenting Your Plugin
	Runtime DLLs

	Debugging
	Debug Setup
	Debug Work-flow
	Debugging Tips
	Task Manager
	Hidden Dialogs
	Streaming and Buffering
	Searches and Triggers
	Common errors
	Logging
	Performance and stability

	Plug-in Framework
	Source Files
	plugin.h (provided)
	CmdParser.cpp (provided)
	Data Output Routines
	Control Routines
	Utility Routines

	<yourplugincode.cpp>
	void OnLoad()
	void GetStrList(int ID, vector<string> &strl)
	ID 0: Return the plug-in description.
	ID 1: Return configuration options
	ID 2: Field Formats
	ID 3: Pre-Processor Name
	ID 4: Framework Version
	ID 5: Lookup tables

	void SetInitItem(unsigned char ID, unsigned char subID, int value)
	void SetCfgItem(unsigned char ID, unsigned char subID, int value)
	void StartOfData()
	void Parse(int64 timestamp,Data64 rawdata)
	void EndOfData()
	void OnUnload()

	Pre-Processors
	ASYNC
	SYNC
	SPI
	I2C
	STATE
	I2S
	CAN Bus
	RAW

	Configuration Editors
	Check box
	Radio group
	Combo box
	Integer Editor
	Time Editor
	Spinner
	Slider
	Channel Select

	Plug-in Examples
	EchoState
	SimpleState
	RawState
	I2CBase
	FrameChar
	HalfDuplex
	AsyncWD
	Track2-full
	SPI-DAC8045
	RawDAC8045
	GroupFilter

	Disclaimers and Restrictions
	No Warranties
	Limits on Liability
	Use and Redistribution

	Contact Information

