
User’s Manual

Copyright © SofTec Microsystems®. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
Designed by

inDART-One

In-Circuit Programmer and
Debugger

for Freescale 8- and 16-bit
Microcontrollers

User’s Manual

Revision 2.0

Copyright © 2006 SofTec Microsystems®
DC01076

We want your feedback!

SofTec Microsystems is always on the look-out for new ways to improve
its Products and Services. For this reason feedback, comments,
suggestions or criticisms, however small, are always welcome.

Our policy at SofTec Microsystems is to comply with all applicable worldwide safety and EMC/EMI
regulations. Our products are certified to comply to the European New Approach Directives and the CE
mark is applied on all our products.
This product as shipped from the factory has been verified to meet with requirements FCC as a CLASS
A product.
This product is designed and intended for use as a development platform for hardware or software in an
educational or professional laboratory.
In a domestic environment, this product may cause radio interference in which case the user may be
required to take adequate prevention measures.
Attaching additional wiring to this product or modifying the product operation from the factory default as
shipped may effect its performance and cause interference with other apparatus in the immediate
vicinity. If such interference is detected, suitable mitigating measures should be taken.

SofTec Microsystems
E-mail (general information): info@softecmicro.com
E-mail (marketing department): marketing@softecmicro.com
E-mail (technical support): support@softecmicro.com
Web: http://www.softecmicro.com

Important
SofTec Microsystems reserves the right to make improvements to the inDART-One In-Circuit Programmer/Debugger, its
documentation and software routines, without notice. Information in this manual is intended to be accurate and reliable.
However, SofTec Microsystems assumes no responsibility for its use; nor for any infringements of rights of third parties which
may result from its use.
SOFTEC MICROSYSTEMS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
Trademarks
SofTec Microsystems is a registered trademark of SofTec Microsystems, Spa.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
Microsoft and Windows are trademarks or registered trademarks of Microsoft Corporation.
PC is a registered trademark of International Business Machines Corporation.
Other products and company names listed are trademarks or trade names of their respective companies.

Written by Paolo Xausa

inDART-One User's Manual

Contents

0 Before Starting 13
0.1 Important Notice to Users 13
0.2 Required Skills 13

1 Overview 15
1.1 What is inDART-One? 15

1.1.1 In-Circuit Debugger 15
1.1.2 Single Programmer 16
1.1.3 Multiple Programmer 16
1.1.4 inDART Programming Library 16

1.2 Package Contents 16
1.3 Optional HC08 Fast Programming Algorithms 17
1.4 Hardware Overview 17

1.4.1 USB Connector 18
1.4.2 MON08 Connector 18
1.4.3 BDM Connector 21
1.4.4 Target Power Connectors 22
1.4.5 Status LEDs 22
1.4.6 “START” Push-Button 23

1.5 Software Overview 24
1.5.1 CodeWarrior Development Studio Special Edition 24
1.5.2 DataBlaze Programming Utility 24
1.5.3 MultiBlaze Programming Utility 25
1.5.4 inDART-One Control Panel 25
1.5.5 Software Upgrades 25

1.6 Recommended Reading 26
1.7 Getting Technical Support 26

2 Setup 27
2.1 Software Setup 27

2.1.1 Host System Requirements 27
2.1.2 CodeWarrior Setup 27

Contents

2.1.3 inDART-One Utilities Setup 28
2.2 Hardware Setup 28

2.2.1 PC Connection 28
2.2.2 Target Connection 31
2.2.3 Communication Settings 32

2.3 Unlocking Fast Programming Algorithms 32
3 Debugging 35

3.1 inDART-One Working Principles 35
3.2 Working with CodeWarrior 35

3.2.1 Using the Project Wizard to Create Your Application Skeleton 35
3.2.2 Starting your First Debugging Session 36
3.2.3 Using Existing Projects with inDART-One 37
3.2.4 Breakpoints and Trace 38

3.3 HC08 Notes and Tips 38
3.3.1 Stop Command Handling 38
3.3.2 Breakpoints and Swi Instruction 39
3.3.3 Reading Peripheral Status 39
3.3.4 Interrupt Execution during Steps 39
3.3.5 Peripheral Status during Steps 39

3.4 HCS08, RS08 and S12(X) Notes and Tips 40
3.4.1 Entering Debug Session with CodeWarrior 40
3.4.2 Reading Peripheral Status 40
3.4.3 Breakpoints and BGND Instruction 40
3.4.4 Real-Time Memory Update 40

4 Programming 43
4.1 DataBlaze Programming Utility 43

4.1.1 Overview 43
4.1.2 Using DataBlaze 43
4.1.3 Using HC08 Fast Algorithms 45

4.2 MultiBlaze Gang Programming Utility 46
4.2.1 Overview 46
4.2.2 Starting MultiBlaze 46
4.2.3 Creating a Project 47
4.2.4 Programming 51
4.2.5 Using HC08 Fast Algorithms 53

inDART-One User's Manual

4.3 BDM Programming Notes 54
5 Working with HC08 Devices 55

5.1 Debugging Limitations 55
5.2 Communication Settings 55

5.2.1 MON08 Configuration 56
5.2.2 Power Settings 57
5.2.3 Programming 60
5.2.4 Trimming 62

5.3 MON08 Target Connections 63
5.3.1 Standard MON08 Connections 63
5.3.2 Enhanced MON08 Connections 65
5.3.3 MC68HC908AB Family Connections 67
5.3.4 MC68HC908AP Family Connections 67
5.3.5 MC68HC908AS Family Connections 68
5.3.6 MC68HC908AZ Family Connections 68
5.3.7 MC68HC908BD Family Connections 69
5.3.8 MC68HC908EY Family Connections 69
5.3.9 MC68HC908GP Family Connections 70
5.3.10 MC68HC908GR4/4A/8/8A Connections 70
5.3.11 MC68HC908GR16 Connections 71
5.3.12 MC68HC908GR16A/32A/48A/60A Connections 71
5.3.13 MC68HC908GT Family Connections 72
5.3.14 MC68HC908GZ Family Connections 72
5.3.15 MC68HC908JB8 Connections 73
5.3.16 MC68HC908JB12/16 Connections 73
5.3.17 MC68HC908JG Connections 74
5.3.18 MC68H(L)C908JK Family Connections 74
5.3.19 MC68H(L)C908JL Family Connections 75
5.3.20 MC68HC908JW Family Connections 75
5.3.21 MC68HC908KX Family Connections 76
5.3.22 MC68HC908LB Family Connections 76
5.3.23 MC68HC908LD Family Connections 77
5.3.24 MC68HC908LJ Family Connections 77
5.3.25 MC68HC908LK Family Connections 78
5.3.26 MC68HC908LT Family Connections 78
5.3.27 MC68HC908LV Family Connections 79
5.3.28 MC68HC908MR Family Connections 79

Contents

5.3.29 MC68HC908QB Family Connections 80
5.3.30 MC68HC908QC Family Connections 80
5.3.31 MC68HC908QF Family Connections 81
5.3.32 MC68HC908QL Family Connections 81
5.3.33 MC68H(L)C908QT Family Connections 82
5.3.34 MC68H(L)C908QY Family Connections 82
5.3.35 MC68HC908RF Family Connections 83
5.3.36 MC68HC908RK Family Connections 83
5.3.37 MC68HC908SR Family Connections 84

6 Working with HCS08 Devices 85
6.1 Communication Settings 85

6.1.1 BDM Clock 85
6.1.2 Fast Programming 86
6.1.3 Trimming 86
6.1.4 Other Settings 86

7 Working with RS08 Devices 87
7.1 Communication Settings 87

7.1.1 Target Communication 87
7.1.2 Trimming 88
7.1.3 Other Settings 88

8 Working with S12(X) Devices 89
8.1 Communication Settings 89

9 inDART Programming Library 93
9.1 Introduction 93
9.2 The inDART Programming Library (IPL) 93
9.3 Installation 93
9.4 Programming Library Reference 94

9.4.1 Using the Interface Library Functions 94
9.4.2 Return Values of the Programming Library Functions 97
9.4.3 Programming Buffer 97

9.5 Function Reference 98
9.5.1 Typedefs and Structures 98
9.5.2 IPL_EndSession() 102

inDART-One User's Manual

9.5.3 IPL_GetBufferChecksum() 103
9.5.4 IPL_GetButtonStatus() 104
9.5.5 IPL_GetDefaultProgrammingSteps() 106
9.5.6 IPL_GetDeviceList() 108
9.5.7 IPL_GetError() 110
9.5.8 IPL_GetInstrumentsConnected() 111
9.5.9 IPL_GetInstrumentStatus() 113
9.5.10 IPL_GetVersion() 114
9.5.11 IPL_LoadFileIntoBuffer() 115
9.5.12 IPL_ReadDataFromBuffer() 117
9.5.13 IPL_ReadDeviceMemory() 118
9.5.14 IPL_SetCallback() 119
9.5.15 IPL_SetCommunicationSettings() 121
9.5.16 IPL_SetDevice() 122
9.5.17 IPL_SetInstrumentConfiguration() 123
9.5.18 IPL_SetProgrammingSteps() 124
9.5.19 IPL_StartProgramming() 125
9.5.20 IPL_StartSession() 126
9.5.21 IPL_WriteDataToBuffer() 127

10 Troubleshooting 129
10.1 Common Problems and Solutions 129

10.1.1 USB Driver Problems 129
10.1.2 Communication Can’t Be Established with inDART-One 129
10.1.3 CodeWarrior-Specific: Stepping Execution is Slow 130
10.1.4 HC08-Specific: Peripheral Speed is Low 130
10.1.5 HCS08-Specific: Communication Lost During Debugging 131
10.1.6 HCS08-Specific: STOP Assembly Instruction Causes a

Microcontroller Reset 131
10.2 Diagnostic Test 131
10.3 Getting Technical Support 132

11 Technical Specifications 133

inDART-One User's Manual

Index of Figures

Figure 1.1: inDART-One Connectors 18
Figure 1.2: MON08 Connector Signals (Standard Mode) 19
Figure 1.3: MON08 Connector Signals (Enhanced Mode) 20
Figure 1.4: BDM Connector Signals 22
Figure 1.5: Status LEDs 23
Figure 2.1: New Hardware Wizard, Step 1 29
Figure 2.2: New Hardware Wizard, Step 2 30
Figure 2.3: New Hardware Wizard, Step 3 30
Figure 2.4: New Hardware Wizard, Step 4 31
Figure 2.5: inDART-One Control Panel 33
Figure 3.1: The “MCU Configuration” Dialog Box 36
Figure 3.2: The “Set Connection” Dialog Box 37
Figure 3.3: The “MCU Configuration” Dialog Box 37
Figure 4.1: The DataBlaze User Interface 44
Figure 4.2: Device Selection 45
Figure 4.3: MultiBlaze Login 46
Figure 4.4: MultiBlaze Main Window 47
Figure 4.5: MultiBlaze Project Wizard, Step 1 48
Figure 4.6: MultiBlaze Project Wizard, Step 2 49
Figure 4.7: MultiBlaze Project Wizard, Step 3 50
Figure 4.8: MultiBlaze Project Wizard, Step 4 51
Figure 4.9: MultiBlaze Programming Window 52
Figure 5.1: MON08 Communication Settings: MON08 Configuration 56
Figure 5.2: MON08 Communication Settings: Power Settings 58
Figure 5.3: MON08 Communication Settings: Target Power Connectors Modes 59
Figure 5.4: MON08 Communication Settings: Programming 60
Figure 5.5: MON08 Communication Settings: Baud Rate Calculator 61
Figure 5.6: MON08 Communication Settings: Trimming 62
Figure 5.7: Typical MON08 Target Connections (Standard Mode) 64
Figure 5.8: Typical MON08 Target Connections (Enhanced Mode) 65
Figure 5.9: Jumpered Enhanced MON08 Connector 66
Figure 5.10: Standard MON08 Connections for the MC68HC908AB Family 67
Figure 5.11: Standard MON08 Connections for the MC68HC908AP Family 67
Figure 5.12: Standard MON08 Connections for the MC68HC908AS Family 68

Contents

Figure 5.13: Standard MON08 Connections for the MC68HC908AZ Family 68
Figure 5.14: Standard MON08 Connections for the MC68HC908BD Family 69
Figure 5.15: Standard MON08 Connections for the MC68HC908EY Family 69
Figure 5.16: Standard MON08 Connections for the MC68HC908GP Family 70
Figure 5.17: Standard MON08 Connections for MC68HC908GR4/4A/8/8A Devices 70
Figure 5.18: Standard MON08 Connections for the MC68HC908GR16 Device 71
Figure 5.19: Standard MON08 Connections for MC68HC908GR16A/32A/48A/60A Devices 71
Figure 5.20: Standard MON08 Connections for the MC68HC908GT Family 72
Figure 5.21: Standard MON08 Connections for the MC68HC908GZ Family 72
Figure 5.22: Standard MON08 Connections for the MC68HC908JB8 Device 73
Figure 5.23: Standard MON08 Connections for MC68HC908JB12/16 Devices 73
Figure 5.24: Standard MON08 Connections for the MC68HC908JG Family 74
Figure 5.25: Standard MON08 Connections for the MC68H(L)C908JK Family 74
Figure 5.26: Standard MON08 Connections for the MC68H(L)C908JL Family 75
Figure 5.27: Standard MON08 Connections for the MC68HC908JW Family 75
Figure 5.28: Standard MON08 Connections for the MC68HC908KX Family 76
Figure 5.29: Standard MON08 Connections for the MC68HC908LB Family 76
Figure 5.30: Standard MON08 Connections for the MC68HC908LD Family 77
Figure 5.31: Standard MON08 Connections for the MC68HC908LJ Family 77
Figure 5.32: Standard MON08 Connections for the MC68HC908LK Family 78
Figure 5.33: Standard MON08 Connections for the MC68HC908LT Family 78
Figure 5.34: Standard MON08 Connections for the MC68HC908LV Family 79
Figure 5.35: Standard MON08 Connections for the MC68HC908MR Family 79
Figure 5.36: Standard MON08 Connections for the MC68HC908QB Family 80
Figure 5.37: Standard MON08 Connections for the MC68HC908QC Family 80
Figure 5.38: Standard MON08 Connections for the MC68HC908QF Family 81
Figure 5.39: Standard MON08 Connections for the MC68HC908QL Family 81
Figure 5.40: Standard MON08 Connections for the MC68HC908QT Family 82
Figure 5.41: Standard MON08 Connections for the MC68HC908QY Family 82
Figure 5.42: Standard MON08 Connections for the MC68HC908RF Family 83
Figure 5.43: Standard MON08 Connections for the MC68HC908RK Family 83
Figure 5.44: Standard MON08 Connections for the MC68HC908SR Family 84
Figure 6.1: The BDM Communication Settings Dialog Box for HCS08 Devices 85
Figure 7.1: The BDM Communication Settings Dialog Box for RS08 Devices 87
Figure 8.1: The BDM Communication Settings Dialog Box for S12(X) Devices 89
Figure 9.1: Typical IPL Workflow 96
Figure 9.2: Programming Buffer 98
Figure 10.1: inDART-One Control Panel 132

inDART-One User's Manual

Index of Tables

Table 1.1: Fast Programming Times for Some HC08 Devices 17
Table 1.2: MON08 Connector Signals (Standard Mode) 20
Table 1.3: MON08 Connector Signals (Enhanced Mode) 21
Table 1.4: BDM Connector Signals 22
Table 1.5: Status LEDs 23
Table 4.1: MultiBlaze Programming States 53
Table 9.1: IPL Callback Events 120
Table 11.1: Electrical Specifications 133
Table 11.2: Physical and Environmental Specifications 134

0
inDART-One User's Manual

13

0 Before Starting

0.1 Important Notice to Users

While every effort has been made to ensure the accuracy of all information in
this document, SofTec Microsystems assumes no liability to any party for
any loss or damage caused by errors or omissions or by statements of any
kind in this document, its updates, supplements, or special editions, whether
such errors are omissions or statements resulting from negligence,
accidents, or any other cause.

0.2 Required Skills

In order to beneficially use the inDART-One In-Circuit
Programmer/Debugger, you should be acquainted with certain skills, ranging
from hardware design to software design. In particular, you should possess
knowledge of the following:

� Microcontroller systems;
� HC08, HCS08, RS08, S12 or S12X architecture knowledge;
� Programming knowledge (Assembly and C).

1

inDART-One User's Manual

15

1 Overview

1.1 What is inDART-One?

The inDART-One In-Circuit Programmer/Debugger is a powerful
programming and debugging tool for Freescale HC08-, HCS08-, RS08-,
S12- and S12X-based systems.

1.1.1 In-Circuit Debugger
inDART-One takes advantage of the CodeWarrior Development Studio
Special Edition (which groups an Editor, Assembler, C Compiler and
Debugger) and the Freescale MON08 and BDM interfaces, which allow the
download and debug of the user application into the target microcontroller’s
FLASH memory.
Together with CodeWarrior, inDART-One provides you with everything you
need to write, compile, download, in-circuit emulate and debug user code.
Full-speed program execution allows you to perform hardware and software
testing in real time. inDART-One is connected to the host PC through a USB
port.
inDART-One offers you the following debugging features:

� Real-time code execution and in-circuit debugging without probes—

works with all packages (MON08- and BDM-compatible connectors);
� 1.8 V to 5.5 V devices supported;
� Standard chip used—no bondouts, 100% electrical characteristics

guaranteed;
� Working frequency up to the target microcontroller’s maximum;
� Jumperless hardware mode setting;
� MON08 automatic target frequency detection;
� MON08 automatic VDD and VTST voltage generation;
� Target power in and power out connectors for manual or automatic

MON08 target power switching;

1

Overview

16

� Hardware self diagnostic test;
� USB connection to the PC;
� CodeWarrior IDE (the same user interface of all Freescale tools), with

editor, assembler, C compiler and debugger.

1.1.2 Single Programmer
Additionally, inDART-One is a full-featured programmer, thanks to the
provided DataBlaze programming utility.

1.1.3 Multiple Programmer
Up to 32 inDART-One instruments can be connected (using USB hubs) to
the same PC, allowing for multiple (gang) programming sessions. A specific
multiple programming utility, MultiBlaze, is provided.

1.1.4 inDART Programming Library
The inDART Programming Library (IPL-One) is a DLL which includes all of
the low-level functions that allow you to set up the instrument and perform all
of the programming commands and functions of the DataBlaze and
MultiBlaze programming utilities from within your own Windows application.
The IPL-One Programming Library contains C written routines, and can be
used to interface the instrument from within, for example, a Microsoft Visual
C or Visual Basic application, as well as any other programming language
that supports the DLL mechanism.

1.2 Package Contents

The inDART-One package includes the following items:

� inDART-One in-circuit programming/debugging unit;
� A USB cable;
� A 16-conductor MON08 cable;
� A 6-conductor BDM cable;

1

inDART-One User's Manual

17

� Two 2-conductor target power cables;
� SofTec Microsystems inDART-One “System Software” CD-ROM;
� CodeWarrior Development Studio Special Edition CD-ROMs;
� A QuickStart Tutorial poster;
� This user’s manual;
� A registration card.

1.3 Optional HC08 Fast Programming Algorithms

Fast programming algorithms reduce significantly the amount of time needed
to program HC08 devices. Fast programming algorithms can be used both in
single and multiple programming.

Device Memory Size Programming Times

MC68HC908GP32 32KB, fCPU = 4 MHz Program = 1.5 s
Program + Verify = 2.9 s

MC68HC908QB8 8KB, fCPU = 4 MHz Program = 1.1 s
Program + Trimming + Verify = 1.5 s

MC68HC908AZ60A 60KB, fCPU = 4 MHz Program = 2.7 s
Program + Verify = 5.4 s

Table 1.1: Fast Programming Times for Some HC08 Devices

See “Unlocking Fast Programming Algorithms” on page 32 for information on
how to purchase and setup these features.

1.4 Hardware Overview

The following figure shows the various inDART-One connectors.

1

Overview

18

Figure 1.1: inDART-One Connectors

1.4.1 USB Connector
The USB connector is used to connect inDART-One to the host PC. When
connecting more then one inDART-One to a host PC, USB hubs can be
used.
inDART-One is USB 2.0 compliant and uses a high speed connection, but
can be connected to USB 1.1 systems as well.
inDART-One is powered by the USB bus voltage.

1.4.2 MON08 Connector
inDART-One uses a 16-pin MON08 connector to program and debug HC08
devices. This connector can be configured to work as a standard (Multilink
compatible) MON08 connector or as an enhanced (SofTec Microsystems
compatible) MON08 connector. The enhanced MON08 connector allows the

1

inDART-One User's Manual

19

target microcontroller to free some lines after entering the monitor mode at
reset.
For more information about how to provide the appropriate MON08
connector on your target board, see “MON08 Target Connections” on page
63.

RST

IRQ

MON4

GND

MON08 Connector
(Standard Mode)

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5

MON6

MON7

MON8

Figure 1.2: MON08 Connector Signals (Standard Mode)

1

Overview

20

Pin Signal Name Description

2 GND System ground.

4 RST# MCU reset; held at VTST (or VDD, depending on the target
microcontroller) out of reset. No other target-system logic
should be tied to this signal.

6 IRQ# MCU interrupt; held at VTST.

8, 10, 12,
14, 16

MON4 ... MON8 I/O pins connected to target microcontroller.

13 OSC This signal can be used as an auxiliary clock source, and
is particularly useful when the target microcontroller
requires an external clock which is not available on the
target board.

15 VDD The target VDD line needs to be driven correctly at reset.
When using the MON08 connector in standard mode,
inDART-One can automatically generate this signal.

1, 3, 5, 7,
9, 11

NC Not connected.

Table 1.2: MON08 Connector Signals (Standard Mode)

\

RST

IRQ

MON4

GND

MON08 Connector
(Enhanced Mode)

1 2

1615

RST_OUT

RST_IN

TGT_IRQ

TGT_MON4

TGT_MON5

TGT_MON6

TGT_MON7

TGT_MON8

MON5

MON6

MON7

MON8

Figure 1.3: MON08 Connector Signals (Enhanced Mode)

1

inDART-One User's Manual

21

Pin Signal Name Description

1 RST_OUT# Reset signal to target system: GND or open drain output
reflecting the state of the MCU RST# and RST_IN#
signals.

2 GND System ground.

3 RST_IN# Reset signal from target system: GND to VDD input to
control the state of the MCU RST# and RST_OUT#
signals.

4 RST# MCU reset; held at VTST (or VDD, depending on the target
microcontroller) out of reset. No other target-system logic
should be tied to this signal.

5 TGT_IRQ# Interrupt signal from target system: GND to VDD input to
control the state of the MCU IRQ# signal.

6 IRQ# MCU interrupt; held at VTST when the TGT_IRQ# signal is
not asserted.

7, 9, 11,
13, 15

TGT_MON4 ...
TGT_MON8

I/O pins connected to target application.

8, 10, 12,
14, 16

MON4 ... MON8 I/O pins connected to target microcontroller.

Table 1.3: MON08 Connector Signals (Enhanced Mode)

Each of the MON08 connector lines must be connected to the appropriate
pins of the specific target microcontroller used. Once a target microcontroller
has been selected, the “Communication Settings” dialog box (available in
CodeWarrior, DataBlaze and MultiBlaze) automatically shows you how to
connect that specific device to the MON08 connector.

1.4.3 BDM Connector
inDART-One uses the standard, 6-pin BDM connector defined by Freescale
to program and debug HCS08, RS08, S12 and S12X devices. You must
therefore provide such connector (see the diagram below) on your target
board.

1

Overview

22

RST/VPP

VDD

GND

BDM Connector

1 2

6 5

BKGD

NC

NC

Figure 1.4: BDM Connector Signals

Pin Signal Name Description

1 BKGD Single-wire background interface pin.

2 GND System ground.

3 NC Not connected.

4 RST#/VPP Reset signal to target system, or VPP.

5 NC Not connected.

6 VDD Power supply voltage from target. This pin is used by inDART-One
for signal conditioning.

Table 1.4: BDM Connector Signals

1.4.4 Target Power Connectors
These two connectors allow you control how to power the target board,
depending on the target device selected and on the target communication
settings.
For more information, see the chapter relative to the target family you are
working with, later in this manual.

1.4.5 Status LEDs
The status LEDs on the instrument turn on/off during the various stages of
debugging and programming.

1

inDART-One User's Manual

23

Figure 1.5: Status LEDs

The following table explains the meaning of each LED.

LED Name Description

POWER Indicates that the instrument is powered on. Turns on when
connecting the instrument to the USB bus.

BUSY Indicates that the instrument is busy, either during programming
or debugging.

OK Turns on at the end of the programming if no errors occurred.

ERROR Turns on at the end of the programming if it could not be
performed successfully.

TGT POWER ON Indicates that you must power on the target board. Only for
MON08 devices, when manual target powering is selected.

TGT POWER OFF Indicates that you must power off the target board. Only for
MON08 devices, when manual target powering is selected.

Table 1.5: Status LEDs

1.4.6 “START” Push-Button
The “START” push-button can be used to start programming the target
device, when using the DataBlaze or MultiBlaze programming utilities.
Additionally, when using MON08 devices with manual target powering, the
“START” button can be used to confirm the target board’s powering on/off,
(see “Power Settings” on page 57).

1

Overview

24

1.5 Software Overview

1.5.1 CodeWarrior Development Studio Special Edition
The inDART-One In-Circuit Programmer/Debugger comes with CodeWarrior
Development Studio Special Editions for the various Freescale HC08,
HCS08, RS08, S12 and S12X families.
CodeWarrior Development Studio is a powerful and easy-to-use tool suite
designed to increase your software development productivity. Its Integrated
Development Environment (IDE) provides unrivaled features such as
Processor Expert application design tool, full chip simulation, Data
Visualization and project manager with templates to help you concentrate on
the added value of your application.
The comprehensive, highly visual CodeWarrior Development Studio for
Freescale Microcontrollers enables you to build and deploy Freescale
systems quickly and easily. This tool suite provides the capabilities required
by every engineer in the development cycle, from board bring-up to firmware
development to final application development.
Without a license key, the product will run in a 1 KB code-size limited
demonstration mode.
To break the 1 KB limit, you have two options:

1. Contact Metrowerks to request an unlimited period, free license key to

increase the code size limit to 16 KB (HC08, HCS08, RS08) or 32 KB
(S12, S12X);

2. Contact Metrowerks to request a 30-day limited, free license key to run
the compiler without limitations.

This documentation covers the basic setup and operation of CodeWarrior
Development Studio, but does not cover all of its functions. For further
information, please refer to the CodeWarrior on-line help and on-line
documentation provided.

1.5.2 DataBlaze Programming Utility
DataBlaze is a full-featured programming utility. DataBlaze offers the
following advanced features:

1

inDART-One User's Manual

25

� Memory editing;
� Blank check/erase/program/verify/read operations;
� Project handling;
� One-button, multiple-operations programming (“Auto” feature);
� Serial numbering.

1.5.3 MultiBlaze Programming Utility
MultiBlaze is an easy-to-use multiple programming utility suitable for
production environments. MultiBlaze offers the following features:

� Easy-to-use programming interface;
� Blank check/erase/program/verify/read operations;
� One-button, multiple-operations programming (“Auto” feature);
� Statistics and logging.

1.5.4 inDART-One Control Panel
The inDART-One Control Panel utility allows you to:

� Perform an instrument self-diagnostic hardware test;
� Install/enable purchased HC08 fast algorithms.

1.5.5 Software Upgrades
The latest version of the inDART-One system software is always available
free of charge from our website: http://www.softecmicro.com.
When installing the inDART-One system software you have the option to
electronically register the product. If you register the product, you will be
automatically notified by e-mail every time a new version of the inDART-One
system software is available.

1

Overview

26

1.6 Recommended Reading

This documentation describes how to use the inDART-One In-Circuit
Programmer/Debugger, how to set up basic debugging sessions with
CodeWarrior, how to use the DataBlaze and MultiBlaze programming
utilities, and how to use the IPL-One Programming Library. Additional
information can be found in the following documents:

� CodeWarrior additional documentation— available from the

CodeWarrior IDE.
� Freescale datasheets.
� Freescale application notes.

1.7 Getting Technical Support

For technical assistance, documentation and information about products and
services, please refer to your local SofTec Microsystems partner.
SofTec Microsystems offers its customers a technical support service at
support@softecmicro.com. Before getting in contact with us, we advise you
to check that you are working with the latest version of the inDART-One
system software (upgrades are available free of charge at
http://www.softecmicro.com) and to run the diagnostic test (see “Diagnostic
Test” on page 131).

2

inDART-One User's Manual

27

2 Setup

2.1 Software Setup

i

Note: before connecting the inDART-One board to the PC, it
is recommended that you install all of the required software
first (see below), so that the inDART-One USB driver will be
automatically found by Windows when you connect the
board.

2.1.1 Host System Requirements
The following hardware and software are required to run the CodeWarrior
user interface and the DataBlaze and MultiBlaze programming utilities
together with inDART-One:

1. A 500-MHz (or higher) PC compatible system running Windows 98,
Windows 2000 or Windows XP;

2. 256 MB of available system RAM plus 1 GB of available hard disk
space;

3. A USB port;
4. CD-ROM drive for installation.

2.1.2 CodeWarrior Setup
To install the CodeWarrior Development Studio Special Edition, insert the
correct CodeWarrior CD-ROM (the one supporting the device family you will
work with) into your computer’s CD-ROM drive. A startup window will
automatically appear. Follow the on-screen instructions.

2

Setup

28

2.1.3 inDART-One Utilities Setup
The inDART-One utilities setup install all of the other required components to
your hard drive. These components include:

� The inDART-One USB driver and DLLs;
� DataBlaze programming utility;
� MultiBlaze multiple programming utility;
� inDART-One control panel;
� CodeWarrior examples;
� inDART Programming Library examples;
� Documentation in PDF format.

To install the inDART-One utilities, insert the SofTec Microsystems “System
Software” CD-ROM into your computer’s CD-ROM drive. A startup window
will automatically appear. Choose “Install Instrument Software” from the
main menu. A list of available software will appear. Click on the “inDART-
One Utilities” option. Follow the on-screen instructions.

i

Note: to install the inDART-One utilities on Windows 2000 or
Windows XP, you must log in as Administrator.

2.2 Hardware Setup

2.2.1 PC Connection
inDART-One connects to the host PC through a USB port. When connecting
more than one inDART-One to a host PC, USB hubs can be used.
inDART-One is USB 2.0 compliant and uses a high speed connection, but
can be connected to USB 1.1 systems as well.
inDART-One is powered by the USB bus voltage, and requires a USB port
capable of supplying 350 mA.

2

inDART-One User's Manual

29

The first time inDART-One is connected to the PC, Windows recognizes the
instrument and starts the “Found New Hardware Wizard” procedure,
asking you to specify the driver to use for the instrument.

1. On Windows XP (SP2) the following dialog box will appear, asking you

to search for a suitable driver on the web.

Figure 2.1: New Hardware Wizard, Step 1

Select the “No, not this time” option and click the “Next >” button.
2. The following dialog box will appear.

2

Setup

30

Figure 2.2: New Hardware Wizard, Step 2

Click the “Next >” button.
3. Depending on your Windows settings, the following warning may

appear.

Figure 2.3: New Hardware Wizard, Step 3

2

inDART-One User's Manual

31

i

Note: this warning is related to the fact that the USB driver
used by inDART-One is not digitally signed by Microsoft, and
Windows considers it to be potentially malfunctioning or
dangerous for the system. However, you can safely ignore
the warning, since every kind of compatibility/security test
has been carried out by SofTec Microsystems.

Click the “Continue Anyway” button.

4. Windows will install the driver files to your system. At the end of the
installation, the following dialog box will appear.

Figure 2.4: New Hardware Wizard, Step 4

Click the “Finish” button to exit from the “Found New Hardware
Wizard” procedure.

5. The Starter Kit’s USB driver is now installed on your system.

2.2.2 Target Connection
inDART-One connects to your target board either via the MON08 connector
or the BDM connector, depending on your hardware’s target device.
Additionally, you can take advantage of the Target Power connectors to
supply your target board. For detailed information about these two

2

Setup

32

connectors and how to use them in conjunction with your target board,
please refer to the following chapters:

� “Working with HC08 Devices”, on page 55
� “Working with HCS08 Devices”, on page 85
� “Working with RS08 Devices”, on page 87
� “Working with S12(X) Devices”, on page 89

depending on the hardware you are working with.

2.2.3 Communication Settings
After physically connecting inDART-One to your target hardware, inDART-
One must be configured properly so that communication with the target
device can be established correctly.
Communication settings are defined through the “Communication Settings”
dialog box, available both in CodeWarrior and in the DataBlaze and
MultiBlaze programming utilities.
Each target device/hardware configuration requires specific settings, detailed
later in this manual in the chapter relative to the target family you are
working with.

2.3 Unlocking Fast Programming Algorithms

Fast HC08 programming algorithms can be purchased and enabled (in one
or more instruments) in order to reduce significantly the amount of time
needed to program HC08 devices. To purchase fast HC08 programming
algorithms, please contact SofTec Microsystems (info@softemicro.com).

2

inDART-One User's Manual

33

i

Note: once an instrument is unlocked for a particular fast
algorithm, all of the other instruments connected to the same
PC are automatically considered unlocked for the same fast
algorithm, as long as the unlocked instrument is also
connected. The unlocked instrument works as a “master”,
temporarily unlocking all of the other instruments connected
to the same PC at the same time.

Once you have the unlocking code(s), do the following:

1. Open the inDART-One Control Panel. Select “Start > Programs >

SofTec Microsystems > inDART-One > Control Panel”. The
following dialog box will appear.

Figure 2.5: inDART-One Control Panel

2. Click the “License Upgrade” button and follow the on-screen
instructions.

3

inDART-One User's Manual

35

3 Debugging

3.1 inDART-One Working Principles

inDART-One is an in-circuit debugger as well as a programming tool. It
programs files into the target microcontroller and offers debugging features
like real-time code execution, stepping, and breakpoint. Its debugging
features are achieved thanks to the microcontroller’s integrated debug
module.
The integrated debug module communicates with the host PC through a bi-
directional, command-based protocol via some dedicated lines of the
microcontroller (which are therefore reserved during debugging sessions).
The same lines are also used during device programming.
Contrariwise to traditional in-circuit emulation (where the target application is
executed and emulated inside the emulator), inDART-One uses the very
same target microcontroller to carry on in-circuit execution. This means that
all microcontroller’s peripherals (timers, A/D converters, I/O pins, etc.) are
not reconstructed or simulated by an external device, but are the very same
target microcontroller’s peripherals. Moreover, the inDART-One debugging
approach ensures that the target microcontroller’s electrical characteristics
(pull-ups, low-voltage operations, I/O thresholds, etc.) are 100% guaranteed.
The trade-off, however, is that the target microcontroller must be properly
configured and ready to execute target applications.

3.2 Working with CodeWarrior

3.2.1 Using the Project Wizard to Create Your Application Skeleton
CodeWarrior helps you get started with your own application by including a
project wizard specific for inDART-One.

To create a new project with CodeWarrior for HC08/HCS08/RS08:

3

Debugging

36

1. From the main menu, select “File > New Project”.
2. A Project Wizard dialog box will appear. Follow the Project Wizard

steps, making sure you select the correct microcontroller derivative you
are working with and that the “SofTec” target connection is used.

To create a new project with CodeWarrior for S12(X):

1. From the main menu, select “File > New”.
2. A dialog box will appear. Select “HC(S)12 New Project Wizard”.
3. Follow the Project Wizard steps, making sure you select the correct

microcontroller derivative you are working with and that the “SofTec”
target connection is used.

3.2.2 Starting your First Debugging Session
The first time you enter a debugging session (by selecting “Project >
Debug” from the CodeWarrior’s main menu) the “MCU Configuration”
dialog box will open, asking you to select the debugging hardware
connected to the PC. Make sure that the hardware code is set to “inDART-
One”.

Figure 3.1: The “MCU Configuration” Dialog Box

3

inDART-One User's Manual

37

3.2.3 Using Existing Projects with inDART-One
If your project has been targeted to an emulator/simulator other than
inDART-One and you wish to use inDART-One as the debugger for your
project, please do the following:

1. From the CodeWarrior debugger interface, select “Component > Set

Connection”. The “Set Connection” dialog box will appear.

Figure 3.2: The “Set Connection” Dialog Box

2. Choose “HC08”, “HCS08”, “RS08” or “HC12” (depending on your
target device) as processor and “SofTec” as connection. Click the
“OK” button.

3. The “MCU Configuration” dialog box will appear allowing you to select
inDART-One as the hardware debugger.

Figure 3.3: The “MCU Configuration” Dialog Box

3

Debugging

38

4. On the CodeWarrior debugger interface a new menu (“inDART-HC08”,
“SofTec-HCS08”, “SofTec-RS08” or “inDART-HCS12”) will be
created. From this menu, select “Load” and locate the object file your
project is based on.

3.2.4 Breakpoints and Trace
CodeWarrior offers a variety of tools for analyzing the program flow:
breakpoints (both simple and complex), watchpoints and a trace buffer. All
these features are implemented by taking advantage of the target
microcontroller’s debug peripheral.

i

Note: when setting an instruction breakpoint on a RAM
location, a software breakpoint is set (the opcode present at
that location is automatically replaced by the BGND
Assembly instruction). Therefore, no hardware breakpoints
are wasted.

i

Note: the Single Step command (in a C source code) and
the Step Over and Step Out commands (both in a C and
Assembly source code) use one hardware breakpoint.

3.3 HC08 Notes and Tips

3.3.1 Stop Command Handling
The “Halt” debugging command will not work unless the IRQ interrupt is
properly handled. In particular, the following precautions must be taken in
the application’s source code.

1. Global interrupts must be enabled (use the “cli” instruction);
2. The IRQ interrupt must be enabled;

3

inDART-One User's Manual

39

3. The IRQ interrupt vector must be handled;
4. The IRQ handling routine must include the following code:

irq_isr: bil irq_isr ; Waits for the IRQ signal to go high

swi ; Jumps to monitor code

 rti

5. Under these conditions, the TGT_IRQ# line is reserved; when it is

driven low, a “Halt” debugging command is automatically recognized.

3.3.2 Breakpoints and Swi Instruction
The HC08’s on-chip debug module only handles one hardware breakpoint.
However, you can force the program execution to stop at other specific
locations by inserting the “swi” Assembly instruction on your source code.

3.3.3 Reading Peripheral Status
Care must be taken when reading some peripheral’s status/data registers,
since a reading operation may cause the clearing of flags. This may happen
when the “Memory” window or the “Data” window is open, since these
windows read microcontroller’s resources during refresh operations.

3.3.4 Interrupt Execution during Steps
When issuing stepping instructions (Single Step, Step Over, etc.) and there
are pending interrupts, inDART-One will not step inside the interrupt
handling routine, but the whole interrupt handling routine is executed. An
exception is when you single step on an Assembly instruction which
branches to itself: in this case, interrupts which may occur are not handled.

3.3.5 Peripheral Status during Steps
When single stepping on an Assembly instruction which branches to itself,
peripheral status is frozen.

3

Debugging

40

3.4 HCS08, RS08 and S12(X) Notes and Tips

3.4.1 Entering Debug Session with CodeWarrior
When entering a debug session, the target microcontroller’s FLASH memory
is automatically erased, unsecured, programmed with the user application,
and the trimming value (if trimming is available for the selected
microcontroller) is automatically calculated and programmed (in the location
suggested by Freescale).

i

Note: When programming the microcontroller with the user
application (after having unsecured the device),
CodeWarrior ignores (doesn’t program) the security bits. As
a result, when entering a debug session, the device is
always unsecured, regardless of other user settings.

3.4.2 Reading Peripheral Status
Care must be taken when reading some peripheral’s status/data registers,
since a reading operation may cause the clearing of flags. This may happen
when the “Memory” window or the “Data” window is open, since these
windows read microcontroller’s resources during refresh operations.

3.4.3 Breakpoints and BGND Instruction
The BGND Assembly instruction forces the target microcontroller to enter the
Active Background Debug mode, stopping program execution. CodeWarrior
recognizes this event as a breakpoint and updates the contents of registers,
memory, etc. Successive commands (Start/Continue, Single Step, etc.) will
continue the execution of the program from the next instruction.

3.4.4 Real-Time Memory Update
During program execution, it is possible to view/edit the contents of the
“Memory” window and “Data” window in real time (edit operations are only

3

inDART-One User's Manual

41

available for RAM locations). For example, it is possible to set the periodical
refresh of the “Memory” window contents by choosing “Mode > Periodical”
from the pop-up menu which appears by right-clicking on the “Memory”
window.

4

inDART-One User's Manual

43

4 Programming

4.1 DataBlaze Programming Utility

4.1.1 Overview
DataBlaze is a full-featured programming utility. DataBlaze offers the
following advanced features:

� Memory editing;
� Blank check/erase/program/verify/read operations;
� Project handling;
� One-button, multiple-operations programming (“Auto” feature);
� Serial numbering.

4.1.2 Using DataBlaze
To start the DataBlaze utility select “Start > Programs > SofTec
Microsystems > inDART-One > DataBlaze Programmer”.

4

Programming

44

Figure 4.1: The DataBlaze User Interface

First, select the target device you are working with. To do so, select
“Operations > Select Device” from the DataBlaze main menu. The
following dialog box will appear.

4

inDART-One User's Manual

45

Figure 4.2: Device Selection

If you have more than one inDART-One instrument connected to the USB
hub, you can specify which one to use with DataBlaze.
Select the device you are working with in the “Device Code” device list and
click the “OK” button.
Next, open the “Communication Settings” dialog box (“Operations >
Communication Settings”), and specify target device-specific settings. For
more information, please refer to the “Communication Settings” section in
the chapter relative to the target family you are working with, later in this
manual.
The “Communication Settings” dialog box can be recalled at any time by
selecting “Operations > Communication Settings” from the DataBlaze
main menu.
For more information about the DataBlaze user interface, please refer to the
DataBlaze online help (“Help > Contents”).

4.1.3 Using HC08 Fast Algorithms
Fast programming algorithms (available as option) reduce significantly the
amount of time needed to program HC08 devices.

4

Programming

46

To unlock fast programming algorithms, you must purchase the appropriate
license. See “Unlocking Fast Programming Algorithms” on page 32 for more
information.
Once fast programming algorithms are unlocked, they are immediately
available to be selected in the “Communication Settings” dialog box.

4.2 MultiBlaze Gang Programming Utility

4.2.1 Overview
MultiBlaze is an easy-to-use multiple programming utility suitable for
production environments. MultiBlaze offers the following features:

� Easy-to-use programming interface;
� Blank check/erase/program/verify/read operations;
� One-button, multiple-operations programming (“Auto” feature);
� Statistics and logging.

4.2.2 Starting MultiBlaze
To start the MultiBlaze gang programming utility select “Start > Programs >
SofTec Microsystems > inDART-One > MultiBlaze Programmer”. The
following dialog box will appear.

Figure 4.3: MultiBlaze Login

MultiBlaze requires you to log in, either as supervisor or operator, with your
username and password. Logging in as supervisor allows you to set up a

4

inDART-One User's Manual

47

project and perform program sessions, while logging in as operator only
allows you to perform programming sessions based on an existing project.

i

Note: logging in as supervisor requires a password. The
default password is “admin”. You can enter a different
password after you have logged in. The default password,
“admin”, can still be used to login, should you forget your
own password.

After you log in, the MultiBlaze main window will appear.

Figure 4.4: MultiBlaze Main Window

4.2.3 Creating a Project
Before to start a programming session, you must first create a project. To
create a project, click the “New Project” button. You will be guided through
a wizard that will help you select your target device, the file to be
programmed, and the inDART-One instruments to be used.

i

Note: creating or editing a project is only possible if you
have logged in as supervisor.

4

Programming

48

On the first wizard step, you must specify a name for the project and the
path where the project file will be saved. You must also specify the target
device you are going to program, and you must specify the communication
settings with your target board by clicking the “Communication Settings”
button, which will open the “Communication Settings” dialog box.
The “Communication Settings” dialog box is specific for the target device you
selected. For more information, please refer to the “Communication Settings”
section in the chapter relative to the target family you are working with, later
in this manual.

Figure 4.5: MultiBlaze Project Wizard, Step 1

On the second wizard step, you must specify the filename to be programmed
into the target device, its format, and the file and buffer offsets, if different
than zero.

4

inDART-One User's Manual

49

Figure 4.6: MultiBlaze Project Wizard, Step 2

On the third wizard step, you can specify which programming steps will be
performed, in sequence, during device programming.
Additionally, you can specify how to start programming. Programming can be
started by either clicking the “Start” button on the Program dialog box (see
below) or by pressing the “Start” button on each inDART-One instrument.

i

Note: clicking the “Start” button in the Program dialog box
causes all instruments to start programming simultaneously.
Pressing the “Start” button on any inDART-One instrument
causes only that instrument to start programming.

4

Programming

50

Figure 4.7: MultiBlaze Project Wizard, Step 3

Finally, on the fourth wizard step, you can assign each inDART-One
instrument to a “programming node”. Different inDART-One instruments are
identified by their serial numbers: you can manually associate their serial
numbers to the programming node of choice.
The “Autofill” button can be used to automatically detect each inDART-One
instrument connected to the USB bus and assign it to a programming node.
Only inDART-One instruments specified in this wizard step will be used
during programming sessions.

4

inDART-One User's Manual

51

Figure 4.8: MultiBlaze Project Wizard, Step 4

At the end of the wizard, a project file is automatically created with the name
and in the location you specified.

4.2.4 Programming
Once a project is loaded (via the “Open Project” button) or after a project
has been created (via the “New Project” button) programming sessions can
be performed.
To start a programming session, click the “Program” button. The following
dialog box will appear.

4

Programming

52

Figure 4.9: MultiBlaze Programming Window

For each of the inDART-One instruments specified in your project, an icon is
present which indicates the status of that instrument. Possible states are
listed in the table below.

4

inDART-One User's Manual

53

Icon State Description

Connected The instrument is connected and waiting for a start
programming command.

Not Connected No link could be established with the instrument.

Busy The instrument is programming the target device.

OK The instrument has successfully performed all of the
programming steps and is waiting for a new start programming
command.

Error The instrument could not complete all of the programming
steps successfully and is waiting for a new start programming
command.

Disabled The instrument will not take part in the programming (as
defined in the current project).

Table 4.1: MultiBlaze Programming States

Depending on the project settings, you can start programming by either
clicking the “Start” button in the “Program” dialog box (all instruments start
programming simultaneously) or press the “Start” button on any inDART-
One instrument (only that instrument will perform programming).
A log file with the details of the programming session is automatically saved
in the project directory.

4.2.5 Using HC08 Fast Algorithms
Fast programming algorithms (available as option) reduce significantly the
amount of time needed to program HC08 devices.
To unlock fast programming algorithms, you must purchase the appropriate
license. See “Unlocking Fast Programming Algorithms” on page 32 for more
information.
Once fast programming algorithms are unlocked, they are immediately
available to be selected in the “Communication Settings” dialog box.

4

Programming

54

4.3 BDM Programming Notes

� The “Mass Erase” operation always blanks the device (even if the
device is protected or secured) and “unsecures” the device (the FLASH
Options/Security Byte location is programmed with 0xFE).

� The “Blank Check” operation doesn’t blank check the FLASH
Options/Security Byte location.

� The “Program” operation automatically verifies the programmed data,
by reading back the programmed data and checking it against the buffer
sent to the target device. The “Verify” operation is much more secure
(but slower), since it reads back the programmed data and checks it
against the data buffer present in the host PC.

� In case of verifying error, please verify the value programmed to the
FLASH Options/Security Byte location. The bit 0 of this byte is always
programmed to 0, so any attempt to program it to 1 will cause a
verifying error.

� The “Read”, “Program” and “Verify” operations are performed (when
possible) by setting the target microcontroller’s PLL peripheral so that
the maximum BDM communication speed is achieved.

� In the “Auto” operation, a “Run” option is available which, if enabled,
resets the microcontroller and runs the user application at the end of
programming.

5

inDART-One User's Manual

55

5 Working with HC08 Devices

5.1 Debugging Limitations

Since inDART-One is based on the in-chip debugging features of the HC08
family of microcontrollers, some hardware and software limitations apply.
The main ones are listed below; for the complete list of limitations please
refer to the microcontroller’s data sheet.

� The pin dedicated to the host communication is reserved—in particular,

the corresponding bit in the Data Direction Register must not be
changed (must be left to input);

� The Break Module peripheral is reserved, and only one hardware
breakpoint is available—however, you can insert a “swi” instruction
into your code to generate a software breakpoint;

� The “swi” instruction is reserved and can be only used to generate a
software breakpoint;

� Step commands which involve the execution of two or more Assembly
instructions waste one hardware breakpoint—therefore, if one
breakpoint was already set by the user, the step command cannot be
executed;

� The “Halt” debugging command (in the CodeWarrior HC08 user
interface) will not work unless the IRQ interrupt is properly handled;

� 13 bytes of stack are wasted by the on-chip monitor—therefore the
addresses from SP-13 to SP are reserved;

� Registers which affect the target microcontroller’s clock speed must not
be changed during debugging sessions.

5.2 Communication Settings

inDART-One must be configured properly so that MON08 communication
with the target device can be established correctly.

5

Working with HC08 Devices

56

Communication settings are defined through the “Communication Settings”
dialog box, available both in CodeWarrior and in the DataBlaze and
MultiBlaze programming utilities.
The dialog box is divided into four sections: “MON08 Configuration”, “Power
Settings”, “Programming” and “Trimming”. All of the parameters must be
carefully set, otherwise unsuccessful operations will result.

5.2.1 MON08 Configuration
This section shows you what lines of the target microcontroller must be tied
to the MON4-MON8 lines of the MON08 connector. Depending on the
microcontroller, either the MON4 or MON5 line is dedicated to the single-
wire communication (which is reserved during debugging).
The other MON lines must be driven at specific values at reset. inDART-One
automatically drives all of the required lines upon reset, and releases them
soon afterwards (except for the single-wire communication line which is
always reserved). Please note that each microcontroller implements the
MON08 interface on different ports and pins.

Figure 5.1: MON08 Communication Settings: MON08 Configuration

5

inDART-One User's Manual

57

inDART-One’s MON08 connector can behave as a standard (Multilink
compatible) MON08 connector or as an enhanced MON08 connector. The
former is suggested for most target boards, while the latter is compatible with
SofTec Microsystems inDART-HC08 and can be specifically used in
conjunction with Freescale ICS boards or with SofTec Microsystems demo
boards. In this case less target I/O lines will be wasted.
For device-specific information, see “MON08 Target Connections” later in
this chapter.
The “MON08 OSC Signal” parameter (available in the standard MON08
mode) allows you to select whether inDART-One generates a clock signal at
the pin 13 of the MON08 connector. This signal can be used as an auxiliary
clock source, and is particularly useful when the target microcontroller
requires an external clock which is not otherwise available on the target
board.
The “External Clock Divider” parameter should always be set to “DIV 4” in
order to guarantee that, in monitor mode, all of the target microcontroller’s
peripherals run at the same speed they do in user mode. If, however, you
need to speed up program execution, you can set this parameter to “DIV 2”,
therefore doubling the microcontroller’s speed in monitor mode. Note,
however, that not all peripherals will work at this doubled speed.

5.2.2 Power Settings
The parameters in this group are used by inDART-One to determine how to
force the target microcontroller to enter the monitor mode.

5

Working with HC08 Devices

58

Figure 5.2: MON08 Communication Settings: Power Settings

The “Target Voltage Selection” parameter must be set to the actual
operating voltage of the target microcontroller. This parameter is
fundamental for proper operations, since it affects (among other things) the
signal conditioning of MON08 lines.
The “Power Control” parameter specifies how the target board is powered
off/on. MON08 debugging and programming requires that the target
microcontroller is powered off and on in order to enter the monitor mode.
Depending on your target hardware, two possibilities are available:

� Automatic. Select this option if you want inDART-One to automatically

turn off and on the target system in order to enter the monitor mode. In
order for this option to work, the target system must be powered
through the “TARGET POWER” connectors (see below).

� Manual. Select this option if your target system cannot be powered by
the “TARGET POWER” connectors. You will be asked, when
necessary, to power off and on the target board manually.

When “Automatic” is selected, you must additionally set two parameters:

5

inDART-One User's Manual

59

� “Power down time”. The time it takes for the power voltage to drop
below 100 mV.

� “Power up time”. The time it takes for target microcontroller to get
ready to communicate after the VDD voltage becomes high.

The “TARGET POWER Connectors” parameter specifies how the two
“TARGET POWER” connectors work.
When the first option (“Mode A”) is selected, the user-supplied voltage at the
“TARGET POWER IN” connector is routed to the target board via the
“TARGET POWER OUT” connector, through an internal relay driven by
inDART-One.
When the second option (“Mode B”) is selected, the voltage at the “TARGET
POWER OUT” connector is internally generated by inDART-One, and the
“TARGET POWER IN” connector is not used. The generated voltage is as
specified by the “Target Voltage Selection” parameter.

i

Note: when “Mode B” is selected, only the central pin of the
“TARGET POWER OUT” connector is used, while the outer
sleeve is not connected. The GND reference is taken from
the “MON08” cable.

Figure 5.3: MON08 Communication Settings: Target Power Connectors Modes

5

Working with HC08 Devices

60

i

Note: when the MON08 connector is configured as
“Standard (Multilink Compatible)” connector, the target
voltage is also generated by inDART-One at the pin 15 of
the MON08 connector.

5.2.3 Programming
Programming parameters mainly determine the speed at which programming
operations are performed.

Figure 5.4: MON08 Communication Settings: Programming

The “Programming Speed” parameter allows you to select among four
programming speeds.

i

Note: the “High Speed” option is only available after
purchasing the appropriate license. See “Unlocking Fast
Programming Algorithms” on page 32 for more information.

5

inDART-One User's Manual

61

The “Target Baud Rate” parameter specifies the MON08 serial line’s baud
rate used to enter the monitor mode. inDART-One can automatically
determine the correct target baud rate in the most common situations; the
“Automatic Detection” is the default option. However, if for some reasons
the automatic detection doesn’t work, you still have the possibility to select
the baud rate manually.

i

Note: when using the manual baud rate selection, keep in
mind that the correct target baud rate value to use critically
depends on the target hardware; different target
configurations require different baud rate values. It is highly
recommended that you consult the data sheet of the target
microcontroller (the section about entering the monitor
mode) in order to calculate the correct baud rate to set. An
improper target baud rate value may result in programming
errors.

As an aid, a baud rate calculator is provided. Just click on the “Baud Rate
Calc.” button and enter the microcontroller external clock frequency and the
appropriate baud rate will be calculated for you. Please note, however, that
this method only works if the IRQ line of the microcontroller is tied to the IRQ
line of the MON08 connector. In all other cases, again, you must consult the
data sheet of the target microcontroller.

Figure 5.5: MON08 Communication Settings: Baud Rate Calculator

5

Working with HC08 Devices

62

The “Verify Mode” parameter specifies how the verifying of the
programmed data will be performed. The standard verify mode reads back
all of the programmed data and verifies it with the data in the PC buffer,
while the checksum mode is based on a checksum of the programmed data.
The standard verify mode is the safest mode, while the checksum verify
mode is the fastest.

i

Note: the “Verify Mode” parameter is only available when
using the DataBlaze or MultiBlaze user interface.

5.2.4 Trimming
inDART-One allows you to enable the target microcontroller’s internal
oscillator calibration (trimming).

Figure 5.6: MON08 Communication Settings: Trimming

5

inDART-One User's Manual

63

The trimming parameters are specific for the selected device. If the selected
device incorporates the OSC module, then you are allowed to select the
OSC frequency to be calibrated, through the “Internal Bus Frequency”
parameter (if more than one internal bus clock frequency is available on that
device).
If, instead, the selected device incorporates the ICG module, then you are
allowed to select the ICG frequency to be calibrated (“ICG Frequency”
parameter), with the corresponding multiplier.
In both cases, it is possible to specify whether to save the calculated
trimmed value in the default location (the location suggested either by
Freescale or SofTec Microsystems, restorable at any moment via the
“Restore” button) or into a different location (“Flash Trimming Location”
parameter).

5.3 MON08 Target Connections

5.3.1 Standard MON08 Connections
The following diagram illustrates a typical connection between your target
microcontroller and the MON08 connector, when inDART-One is configured
to use the standard (Multilink compatible) MON08 connector.

5

Working with HC08 Devices

64

User Application

RST

IRQ

MON4

MON5

MON6

MON7

MON8

VSS

VDD

OSC1

OSC2

Target
Microcontroller

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

4K7 Typical

Figure 5.7: Typical MON08 Target Connections (Standard Mode)

i

Note: the target VDD line needs to be driven correctly at
reset. When using the MON08 connector in standard mode,
inDART-One can automatically supply the connector’s pin
15 with the appropriate voltage.

i

Note: the MON08 OSC signal (pin 13 of the MON08
connector) can be used instead as an auxiliary clock source,
and is particularly useful when the target microcontroller
requires an external clock which is not available on the
target board.

5

inDART-One User's Manual

65

i

Note: each microcontroller implements the MON08 interface
on different ports and pins. MON4-MON8 lines must be
therefore tied to the appropriate pins of the specific target
microcontroller.

5.3.2 Enhanced MON08 Connections
The following diagram illustrates a typical connection between your target
microcontroller and the MON08 connector, when inDART-One is configured
to use the enhanced (SofTec Microsystems) MON08 connector.

User Application

RST

IRQ

MON4

MON5

MON6

MON7

MON8

VSS

VDD

TGT_IRQ

TGT_MON4

TGT_MON5

TGT_MON6

TGT_MON7

TGT_MON8

RST_IN

RST_OUT

OSC1

OSC2

Target
Microcontroller

Enhanced
MON08

Connector

1 2

1615

Figure 5.8: Typical MON08 Target Connections (Enhanced Mode)

i

Note: the target VDD line needs to be driven correctly at
reset. When using the MON08 connector in enhanced mode,
the correct voltage can be taken from inDART-One’s
“TARGET POWER” connectors.

5

Working with HC08 Devices

66

i

Note: each microcontroller implements the MON08 interface
on different ports and pins. MON4-MON8 lines must be
therefore tied to the appropriate pins of the specific target
microcontroller.

If your target board implements the enhanced MON08 connector, to work
without inDART-One connected then the MON08 connector must be
jumpered as shown below on the left.

Enhanced MON08 connector jumpered
to allow the target board to work

when inDART-One is not used

1 2

1615

Enhanced MON08 connector
with PCB tracks to be cut for debugging

1 2

1615

Figure 5.9: Jumpered Enhanced MON08 Connector

Alternatively, PCB tracks can be routed as shown on the right. In the target
board you use for debugging, cut the tracks as indicated.

5

inDART-One User's Manual

67

5.3.3 MC68HC908AB Family Connections
Standard MON08 connections for MC68HC908AB family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.10: Standard MON08 Connections for the MC68HC908AB Family

5.3.4 MC68HC908AP Family Connections
Standard MON08 connections for MC68HC908AP family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA2 (0)

MON7 = PTA1 (1)

MON8 = PTB0 (DIV)

Figure 5.11: Standard MON08 Connections for the MC68HC908AP Family

5

Working with HC08 Devices

68

5.3.5 MC68HC908AS Family Connections
Standard MON08 connections for MC68HC908AS family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.12: Standard MON08 Connections for the MC68HC908AS Family

5.3.6 MC68HC908AZ Family Connections
Standard MON08 connections for MC68HC908AZ family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.13: Standard MON08 Connections for the MC68HC908AZ Family

5

inDART-One User's Manual

69

5.3.7 MC68HC908BD Family Connections
Standard MON08 connections for MC68HC908BD family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA7 (0)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.14: Standard MON08 Connections for the MC68HC908BD Family

5.3.8 MC68HC908EY Family Connections
Standard MON08 connections for MC68HC908EY family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB3 (0)

MON7 = PTB4 (1)

MON8 = PTB5 (DIV)

Figure 5.15: Standard MON08 Connections for the MC68HC908EY Family

5

Working with HC08 Devices

70

5.3.9 MC68HC908GP Family Connections
Standard MON08 connections for MC68HC908GP family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA7 (0)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.16: Standard MON08 Connections for the MC68HC908GP Family

5.3.10 MC68HC908GR4/4A/8/8A Connections
Standard MON08 connections for MC68HC908GR4/4A/8/8A devices are
shown in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB0 (1)

MON7 = PTB1 (0)

MON8 = NC

Figure 5.17: Standard MON08 Connections for MC68HC908GR4/4A/8/8A Devices

5

inDART-One User's Manual

71

5.3.11 MC68HC908GR16 Connections
Standard MON08 connections for the MC68HC908GR16 device are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB0 (1)

MON7 = PTB1 (0)

MON8 = PTB4 (DIV)

Figure 5.18: Standard MON08 Connections for the MC68HC908GR16 Device

5.3.12 MC68HC908GR16A/32A/48A/60A Connections
Standard MON08 connections for MC68HC908GR16A/32A/48A/60A devices
are shown in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB0 (1)

MON7 = PTB1 (0)

MON8 = PTB4 (DIV)

Figure 5.19: Standard MON08 Connections for MC68HC908GR16A/32A/48A/60A Devices

5

Working with HC08 Devices

72

5.3.13 MC68HC908GT Family Connections
Standard MON08 connections for MC68HC908GT family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = NC

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.20: Standard MON08 Connections for the MC68HC908GT Family

5.3.14 MC68HC908GZ Family Connections
Standard MON08 connections for MC68HC908GZ family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB0 (1)

MON7 = PTB1 (0)

MON8 = PTB4 (DIV)

Figure 5.21: Standard MON08 Connections for the MC68HC908GZ Family

5

inDART-One User's Manual

73

5.3.15 MC68HC908JB8 Connections
Standard MON08 connections for the MC68HC908JB8 device are shown in
the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTA3 (DIV)

Figure 5.22: Standard MON08 Connections for the MC68HC908JB8 Device

5.3.16 MC68HC908JB12/16 Connections
Standard MON08 connections for MC68HC908JB12/16 devices are shown
in the figure below.

RST

IRQ

MON4 = PTE3 (1)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTA3 (DIV)

Figure 5.23: Standard MON08 Connections for MC68HC908JB12/16 Devices

5

Working with HC08 Devices

74

5.3.17 MC68HC908JG Connections
Standard MON08 connections for MC68HC908JG family devices are shown
in the figure below.

RST

IRQ

MON4 = PTE3 (1)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTA3 (DIV)

Figure 5.24: Standard MON08 Connections for the MC68HC908JG Family

5.3.18 MC68H(L)C908JK Family Connections
Standard MON08 connections for MC68H(L)C908JK family devices are
shown in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTB0 (COM)

MON6 = PTB1 (1)

MON7 = PTB2 (0)

MON8 = PTB3 (DIV)

Figure 5.25: Standard MON08 Connections for the MC68H(L)C908JK Family

5

inDART-One User's Manual

75

5.3.19 MC68H(L)C908JL Family Connections
Standard MON08 connections for MC68H(L)C908JL family devices are
shown in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTB0 (COM)

MON6 = PTB1 (1)

MON7 = PTB2 (0)

MON8 = PTB3 (DIV)

Figure 5.26: Standard MON08 Connections for the MC68H(L)C908JL Family

5.3.20 MC68HC908JW Family Connections
Standard MON08 connections for MC68HC908JW family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTC1 (DIV)

Figure 5.27: Standard MON08 Connections for the MC68HC908JW Family

5

Working with HC08 Devices

76

5.3.21 MC68HC908KX Family Connections
Standard MON08 connections for MC68HC908KX family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA1 (0)

MON6 = PTB0 (1)

MON7 = PTB1 (0)

MON8 = NC

Figure 5.28: Standard MON08 Connections for the MC68HC908KX Family

5.3.22 MC68HC908LB Family Connections
Standard MON08 connections for MC68HC908LB family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.29: Standard MON08 Connections for the MC68HC908LB Family

5

inDART-One User's Manual

77

5.3.23 MC68HC908LD Family Connections
Standard MON08 connections for MC68HC908LD family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA7 (0)

MON6 = PTC0 (1)

MON7 = PTC1 (0)

MON8 = PTC3 (DIV)

Figure 5.30: Standard MON08 Connections for the MC68HC908LD Family

5.3.24 MC68HC908LJ Family Connections
Standard MON08 connections for MC68HC908LJ family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTC1 (DIV)

Figure 5.31: Standard MON08 Connections for the MC68HC908LJ Family

5

Working with HC08 Devices

78

5.3.25 MC68HC908LK Family Connections
Standard MON08 connections for MC68HC908LK family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTC1 (DIV)

Figure 5.32: Standard MON08 Connections for the MC68HC908LK Family

5.3.26 MC68HC908LT Family Connections
Standard MON08 connections for MC68HC908LT family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = NC

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTC3 (1)

Figure 5.33: Standard MON08 Connections for the MC68HC908LT Family

5

inDART-One User's Manual

79

5.3.27 MC68HC908LV Family Connections
Standard MON08 connections for MC68HC908LV family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = NC

MON6 = PTA1 (1)

MON7 = PTA2 (0)

MON8 = PTC3 (1)

Figure 5.34: Standard MON08 Connections for the MC68HC908LV Family

5.3.28 MC68HC908MR Family Connections
Standard MON08 connections for MC68HC908MR family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTC2 (DIV)

MON6 = PTC3 (1)

MON7 = PTC4 (0)

MON8 = PTA7 (0)

Figure 5.35: Standard MON08 Connections for the MC68HC908MR Family

5

Working with HC08 Devices

80

5.3.29 MC68HC908QB Family Connections
Standard MON08 connections for MC68HC908QB family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.36: Standard MON08 Connections for the MC68HC908QB Family

5.3.30 MC68HC908QC Family Connections
Standard MON08 connections for MC68HC908QC family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.37: Standard MON08 Connections for the MC68HC908QC Family

5

inDART-One User's Manual

81

5.3.31 MC68HC908QF Family Connections
Standard MON08 connections for MC68HC908QF family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.38: Standard MON08 Connections for the MC68HC908QF Family

5.3.32 MC68HC908QL Family Connections
Standard MON08 connections for MC68HC908QL family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.39: Standard MON08 Connections for the MC68HC908QL Family

5

Working with HC08 Devices

82

5.3.33 MC68H(L)C908QT Family Connections
Standard MON08 connections for MC68H(L)C908QT family devices are
shown in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.40: Standard MON08 Connections for the MC68HC908QT Family

5.3.34 MC68H(L)C908QY Family Connections
Standard MON08 connections for MC68H(L)C908QY family devices are
shown in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA4 (0)

MON6 = PTA1 (1)

MON7 = NC

MON8 = NC

Figure 5.41: Standard MON08 Connections for the MC68HC908QY Family

5

inDART-One User's Manual

83

5.3.35 MC68HC908RF Family Connections
Standard MON08 connections for MC68HC908RF family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTB0 (1)

MON6 = PTB2 (0)

MON7 = PTB3 (DIV)

MON8 = NC

Figure 5.42: Standard MON08 Connections for the MC68HC908RF Family

5.3.36 MC68HC908RK Family Connections
Standard MON08 connections for MC68HC908RK family devices are shown
in the figure below.

RST

IRQ

MON4 = PTA0 (COM)

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTB0 (1)

MON6 = PTB2 (0)

MON7 = PTB3 (DIV)

MON8 = NC

Figure 5.43: Standard MON08 Connections for the MC68HC908RK Family

5

Working with HC08 Devices

84

5.3.37 MC68HC908SR Family Connections
Standard MON08 connections for MC68HC908SR family devices are shown
in the figure below.

RST

IRQ

MON4 = NC

GND

Standard
MON08 Connector

1 2

1615

NC

NC

NC

NC

NC

NC

OSC

VDD

MON5 = PTA0 (COM)

MON6 = PTA2 (0)

MON7 = PTA1 (1)

MON8 = PTC1 (DIV)

Figure 5.44: Standard MON08 Connections for the MC68HC908SR Family

6

inDART-One User's Manual

85

6 Working with HCS08 Devices

6.1 Communication Settings

inDART-One must be configured properly so that BDM communication with
the target device can be established correctly.
Communication settings are defined through the “Communication Settings”
dialog box, available both in CodeWarrior and in the DataBlaze and
MultiBlaze programming utilities.

Figure 6.1: The BDM Communication Settings Dialog Box for HCS08 Devices

6.1.1 BDM Clock
The BDM communication speed depends on a clock source which, in turn, is
selected by the CLKSW bit in the Status register. If the CLKSW bit is set to
1, the BDM communication clock source is the microcontroller’s bus
frequency; if the CLKSW bit is set to 0, the BDM communication clock
source is a constant clock source, which can vary depending on the specific
HCS08 derivative. In the case of the MC9S08GB60, for example, this
constant clock source is a 8 MHz internal clock. Other derivatives may use
the external crystal frequency.
Which CLKSW setting to use depends on the target system and on the user
application. The idea is to set the CLKSW bit so that the highest (and less
subject to changes) clock frequency is used for the BDM communication. A

6

Working with HCS08 Devices

86

low clock frequency will result in slow BDM communication (and therefore
slow debugging and slow programming), while a clock frequency which
changes frequently (as in the case of the user application modifying the FLL
peripheral) may result in loss of BDM communication.

6.1.2 Fast Programming
The “Enable Fast Programming” parameter (available on some devices), if
selected, speeds up programming by driving the microcontroller’s internal
PLL circuitry to the maximum settings.

6.1.3 Trimming
Some devices can have their internal oscillator calibrated (trimmed) through
the “VCO Bus Frequency” parameter (please note that other devices may
present different calibration parameters).

6.1.4 Other Settings
The “TARGET POWER OUT Voltage” parameter specifies the voltage
provided by inDART-One on the “TARGET POWER OUT” connector, which
can be used to power up the target board.

i

Note: only the central pin of the “TARGET POWER OUT”
connector is used, while the outer sleeve is not connected.
The GND reference is taken from the “BDM” cable.

The “RESET Rise Time” parameter specifies the time, in milliseconds,
needed for the target RESET signal to go high. This value depends on the
target system, and is used by inDART-One to generate the appropriate delay
before to drive the BKGD line correctly in order to enter the special single
chip mode. The default value of 20 ms is appropriate for most systems.

7

inDART-One User's Manual

87

7 Working with RS08 Devices

7.1 Communication Settings

inDART-One must be configured properly so that BDM communication with
the target device can be established correctly.
Communication settings are defined through the “Communication Settings”
dialog box, available both in CodeWarrior and in the DataBlaze and
MultiBlaze programming utilities.

Figure 7.1: The BDM Communication Settings Dialog Box for RS08 Devices

i

Note: this chapter describes communication settings with
the only RS08 device so far released by Freescale
(MC9RS08KA2). Other devices may present different
configuration parameters.

7.1.1 Target Communication
The “Target Communication” parameter specifies how to enter the target
device’s Active Background Mode. Communication with the target device
can be established via either a hardware or software Reset, depending on
whether the Reset pin is used as Reset function or not.

7

Working with RS08 Devices

88

7.1.2 Trimming
The target device’s internal oscillator can be calibrated (trimmed) through the
“DCO Output Frequency” parameter (please note that other devices may
present different calibration parameters).

7.1.3 Other Settings
The “TARGET POWER OUT Voltage” parameter specifies the voltage
provided by inDART-One on the “TARGET POWER OUT” connector, which
can be used to power up the target board.

i

Note: only the central pin of the “TARGET POWER OUT”
connector is used, while the outer sleeve is not connected.
The GND reference is taken from the “BDM” cable.

8

inDART-One User's Manual

89

8 Working with S12(X) Devices

8.1 Communication Settings

inDART-One must be configured properly so that BDM communication with
the target device can be established correctly.
Communication settings are defined through the “Communication Settings”
dialog box, available both in CodeWarrior and in the DataBlaze and
MultiBlaze programming utilities.

Figure 8.1: The BDM Communication Settings Dialog Box for S12(X) Devices

The first parameter, “BDM Clock Frequency Detection”, specifies how to
detect the target microcontroller’s BDM clock frequency. There are two
options:

� “Automatic Detection”: inDART-One automatically detects the target

microcontroller’s BDM frequency. This setting is highly recommended
for devices which support the SYNC BDM command, since in such

8

Working with S12(X) Devices

90

devices the frequency detection is totally accurate. For devices which
do not support the SYNC command, the automatic frequency detection
may not be accurate.

� “Manual”: alternatively, you can manually specify the microcontroller’s
BDM frequency. Usually, this value is half that of the external oscillator
frequency. Since this frequency is also used by the programming
algorithms, it is important to carefully specify this parameter.
Programming the device with an incorrect BDM frequency may result in
stress to the FLASH/EEPROM memory cells, thus reducing the lifetime
of the memory.

Another parameter, “BDM Clock Source”, specifies the link between the
microcontroller’s bus frequency and the BDM clock frequency during
debugging. The BDM clock source can be selected by the CLKSW bit in the
BDM Status register.

� If the CLKSW bit is set to 1, the BDM communication clock source is

the microcontroller’s bus frequency.
� If the CLKSW bit is set to 0, the BDM communication clock source is a

constant clock source (not dependent on the bus frequency), which can
vary depending on the specific S12 derivative. In the case of the
MC9S12DP256, for example, this constant clock source is half the
frequency of the external oscillator.

Which CLKSW setting to use depends on the target system and on the user
application. The idea is to set the CLKSW bit so that the highest (and less
subject to changes) clock frequency is used for the BDM communication. A
low clock frequency will result in slow BDM communication (and therefore
slow debugging), while a clock frequency which changes frequently (as in
the case of the user application modifying the PLL peripheral) may result in
loss of BDM communication.
The “Enable Fast Programming” parameter, if selected, speeds up
programming by driving the microcontroller’s internal PLL circuitry to the
maximum settings. In order for this feature to work, an appropriate loop filter
circuitry must be provided to the device’s XFC pin.
The “TARGET POWER OUT Voltage” parameter specifies the voltage
provided by inDART-One on the “TARGET POWER OUT” connector, which
can be used to power up your target board.

8

inDART-One User's Manual

91

i

Note: only the central pin of the “TARGET POWER OUT”
connector is used, while the outer sleeve is not connected.
The GND reference is taken from the “BDM” cable.

The “RESET Rise Time” parameter specifies the time, in milliseconds,
needed for the target RESET signal to go high. This value depends on the
target system, and is used by inDART-One to generate the appropriate delay
before to drive the BKGD line correctly in order to enter the special single
chip mode. The default value of 20 ms is appropriate for most systems.

9

inDART-One User's Manual

93

9 inDART Programming Library

9.1 Introduction

This documentation deals with low-level interfacing between user written PC
applications and the inDART-One In-Circuit Programmer/Debugger. This
section assumes you have already read the previous sections of this user’s
manual and got acquainted with the instrument. All of the examples provided
in this documentation are written in C, unless otherwise reported.

9.2 The inDART Programming Library (IPL)

The IPL-One Programming Library is a DLL which includes all of the low-
level functions that allow you to set up the instrument and perform most of
the programming commands and functions of the DataBlaze and MultiBlaze
user interfaces from within your own application.
Dynamic-link libraries (DLL) are modules that contain functions and data. A
DLL is loaded at run time by its calling modules (.exe or .dll). When a DLL is
loaded, it is mapped into the address space of the calling process.
The inDART Programming Library contains C written routines, and can be
used to interface the instrument from within, for example, a Microsoft Visual
C or Visual Basic application, as well as any other programming language
that supports the DLL mechanism. For details on how to call DLL functions
from within your application, please refer to the your programming
language’s documentation.

9.3 Installation

Before to start working with the inDART Programming Library, you must set
up your system with all the required files and drivers. The files to be installed
are:

� The “sftdrv01.sys” file in “Windows\System32\Drivers”;

9

inDART Programming Library

94

� The “udart01.inf” file in “Windows\Inf”;
� The “IPL-One.dll”, “BL-One.dll”, “PI-One.dll” and all of the

“Drv*.dll” files into your application’s directory.

These files are automatically installed by the inDART-One Utilities setup, as
described in “inDART-One Utilities Setup” on page 28.

9.4 Programming Library Reference

9.4.1 Using the Interface Library Functions
When you control one or more inDART-One within your own application, you
will typically follow the steps indicated below:

1. Initialize the programming session.

The IPL_StartSession() function must be called prior to any other
IPL function. This function detects all inDART-One instruments
connected to the USB bus and determines whether fast programming
algorithms are unlocked.

2. Initialize the instrument(s).
To communicate with the target device you need to initialize the
instrument(s) with target device information. Initialization functions
include:

� IPL_GetDeviceList()

� IPL_SetDevice()

� IPL_SetCommunicationSettings()

� IPL_LoadFileIntoBuffer()

3. Program.

Once the instrument(s) has/have been set up, you can begin
programming, with the IPL_StartProgramming() function.

4. Close the communication with the instrument(s).
This is done by the IPL_EndSession() function. Closing the

9

inDART-One User's Manual

95

communication with the instrument(s) frees resources used during
communication.

The figure below illustrates a typical working flow.

9

inDART Programming Library

96

IPL_StartSession()

Instrument Network
Configuration

IPL_GetDeviceList()

IPL_SetDevice()

IPL_SetCommunicationSettings()

IPL_LoadFileIntoBuffer()

IPL_GetDefaultProgrammingSteps()

IPL_EndSession()

IPL_StartProgramming()

IPL_SetProgrammingSteps()

IPL_SetCallBack()

IPL_SetInstrumentsConfiguration()

IPL_GetInstrumentsConnected()

IPL_WriteDataToBuffer()

IPL_GetInstrumentStatus()

Optional

Target Device
Selection
and Configuration

Programming Steps
Definition

Programming

Programming Buffer
Definition

Figure 9.1: Typical IPL Workflow

9

inDART-One User's Manual

97

9.4.2 Return Values of the Programming Library Functions
Most of the inDART Programming Library functions return a BOOL value
which indicates whether the function was successfully executed (return value
= TRUE) or not (return value = FALSE). In the latter case it is possible to get
extended error information by calling the function IPL_GetError:

void IPL_GetError(char *error_string);

The error_string parameter will be filled with a text message explaining
the cause of the problem.

9.4.3 Programming Buffer
A local (PC) programming buffer is automatically handled by the
Programming Library. Between an IPL_StartSession() and
IPL_EndSession() block, the Programming Library maintains a buffer
which can be used to write data to/read data from the target device.
This buffer is filled via the IPL_LoadFileIntoBuffer(),
IPL_ReadDeviceMemoryIntoBuffer() and
IPL_WriteDataToBuffer() functions and is read via the
IPL_ReadDataFromBuffer() function.
The IPL_StartProgramming() function uses the programming buffer
contents to program the target device.
The programming buffer can be thought of as a one-to-one mapping of the
target device memory into a PC memory area.
The figure below illustrates how the programming buffer is used.

9

inDART Programming Library

98

User Application

IPL_StartProgramming()

IPL_ReadDeviceMemoryIntoBuffer()

IPL_ReadDeviceMemoryIntoBuffer()

Programming Buffer Target Device

IPL_ReadDeviceMemoryIntoBuffer()

IPL_StartProgramming()

Figure 9.2: Programming Buffer

i

Note: the programming buffer size is automatically set to the
target device’s memory size, after the IPL_SetDevice()
function is called.

9.5 Function Reference

Each Programming Library function is listed alphabetically and explained in
the following pages.

9.5.1 Typedefs and Structures
Listed below are the various typedefs and structures used by the IPL-One
functions.

typedef enum {
 IPL_FORMAT_BINARY = 0,
 IPL_FORMAT_IHEX = 1,
 IPL_FORMAT_S19 = 2,
} IPL_FILE_FORMAT;

9

inDART-One User's Manual

99

typedef enum {
 IPL_STEP_CODE_BLANK = 0,
 IPL_STEP_CODE_ERASE = 1,
 IPL_STEP_CODE_PROGRAM = 2,
 IPL_STEP_CODE_VERIFY = 3,
 IPL_STEP_DATA_BLANK = 4,
 IPL_STEP_DATA_ERASE = 5,
 IPL_STEP_DATA_PROGRAM = 6,
 IPL_STEP_DATA_VERIFY = 7,
 IPL_STEP_TRIM_PROG = 8,
 IPL_STEP_RUN = 9,
 IPL_STEP_CODE_READ = 10,
 IPL_STEP_DATA_READ = 11,
 IPL_STEP_NOT_SUPPORTED = 12,
 IPL_STEP_TARGET_OFF = 13,
} IPL_PROG_STEP;

typedef enum {
 IPL_STATUS_IDLE = 0,
 IPL_STATUS_WORKING = 1,
 IPL_STATUS_ERR_COMMUNICATION = 2,
 IPL_STATUS_ERR_INTERNAL = 3,
 IPL_STATUS_ERR_BLANKCHECK_DEVICE = 4,
 IPL_STATUS_ERR_READ_DEVICE = 5,
 IPL_STATUS_ERR_ERASE_DEVICE = 6,
 IPL_STATUS_ERR_PROGRAM_DEVICE = 7,
 IPL_STATUS_ERR_VERIFY_DEVICE = 8,
 IPL_STATUS_ERR_PROTECTION_DEVICE = 9,
 IPL_STATUS_ERR_INVALID_DEVICE = 10
} IPL_INST_STATUS_MODE;

9

inDART Programming Library

100

typedef enum {
 IPL_EVENT_PROG_START = 0,
 IPL_EVENT_PROG_END = 1,
 IPL_EVENT_PROG_STEP = 2,
 IPL_EVENT_ERROR = 3,
} IPL_EVENT_TYPE;

typedef struct _IPL_DEVICE_LIST {
 char device_code[50];
 char family_code[20];
} IPL_DEVICE_LIST;

typedef struct _IPL_INST_INFO {
 unsigned int SN;
 BOOL driver_busy;
} IPL_INST_INFO;

typedef struct _IPL_INST_CONFIG {
 unsigned int SN;
 int ID;
} IPL_INST_CONFIG;

typedef struct _IPL_INST_STATUS {
 IPL_INST_STATUS_MODE mode;
 char message[MAXLEN_ERROR_MSG];
} IPL_INST_STATUS;

typedef struct _IPL_EVENT_PROG_STEP_DATA {
 IPL_PROG_STEP cmd;
 unsigned long perc;
} IPL_EVENT_PROG_STEP_DATA;

9

inDART-One User's Manual

101

void (*IPL_CALLBACK)(
int inst_ID,
IPL_EVENT_TYPE event_type,
void *event_data);

9

inDART Programming Library

102

9.5.2 IPL_EndSession()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_EndSession(void);

Parameters:
None.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Ends a programming “session”. All of the Programming Library
functions (exception made for the IPL_GetVersion() function)
must be called within a IPL_StartSession() and
IPL_EndSession() function.

9

inDART-One User's Manual

103

9.5.3 IPL_GetBufferChecksum()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetBufferChecksum(unsigned long *chk);

Parameters:
chk: pointer to an unsigned integer that will receive the

checksum of the programming buffer.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Calculates and returns the checksum of the programming buffer.

9

inDART Programming Library

104

9.5.4 IPL_GetButtonStatus()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetButtonStatus(

int inst_ID,
BOOL *pressed,
IPL_INST_STATUS *status);

Parameters:
inst_ID: ID of the inDART-One instrument (previously set

via the IPL_SetInstrumentConfiguration()
function).

pressed: TRUE if the “START” button is pressed, FALSE
otherwise.

status: pointer to an IPL_INST_STATUS structure that will
receive instrument status information (see the
IPL_GetInstrumentStatus() function).

Return value:

TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
This function reads the status of the “START” button of the specified
inDART-One instruments. If the “START” button is pressed, the
pressed parameter will be TRUE.

9

inDART-One User's Manual

105

i

Note: calling this function when the specified inDART-
One instrument is busy programming will always
result in the pressed parameter to be FALSE.

9

inDART Programming Library

106

9.5.5 IPL_GetDefaultProgrammingSteps()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetDefaultProgrammingSteps(

IPL_PROG_STEP *prog_steps,
int n_items,
int *items_found);

Parameters:
prog_steps: pointer to the array that will be filled with the

default programming steps for the currently
selected target device.

n_items: number of programming steps to retrieve.
items_found: the actual number of default programming steps

available for the currently selected target device.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Fills an array (prog_steps) with the default programming steps for
the currently selected target device. The function returns n_items.
The items_found variable will contain the actual number of
programming steps.

9

inDART-One User's Manual

107

Tip: you can first call:

IPL_GetDefaultProgrammingSteps(NULL, 0,

*no_of_prog_steps);

to get the number of programming steps, and then call:

IPL_GetDefaultProgrammingSteps(*tot_steps,

no_of_prog_steps, NULL);

to retrieve them all.

9

inDART Programming Library

108

9.5.6 IPL_GetDeviceList()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetDeviceList(

IPL_DEVICE_LIST *device_list,
int n_items,
int *items_found);

Parameters:
device_list: pointer to the array that will be filled with the device

list.
n_items: number of devices to retrieve.
items_found: the actual number of devices present in the

Programming Library’s device list.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Fills an array (device_list) with devices supported by the IPL-One
Programming Library. The function extracts n_items from the
Programming Library device list. The items_found variable will
contain the actual number of devices present in the Programming
Library’s device list.

9

inDART-One User's Manual

109

Tip: you can first call:

IPL_GetDeviceList(NULL, 0, *no_of_devices);

to get the number of devices, and then call:

IPL_GetDeviceList(*tot_list, no_of_devices, NULL);

to retrieve them all.

9

inDART Programming Library

110

9.5.7 IPL_GetError()

Include file:

#include “IPL-One.h”

Function prototype:
void IPL_GetError(char *error_string);

Parameters:
error_string: this parameter will be filled with a text message

explaining the cause of the problem.
Return value:

None.

Description:
Most of the Programming Library functions return a BOOL value which
indicates whether the function was successfully executed (return value
= TRUE) or not (return value = FALSE). In the latter case it is possible
to get extended error information by calling the IPL_GetError()
function.

i

Note: this function must be called within an
IPL_StartSession()/ IPL_EndSession() block.

9

inDART-One User's Manual

111

9.5.8 IPL_GetInstrumentsConnected()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetInstrumentsConnected(

IPL_INST_INFO *inst_info,
int n_items,
int *items_found);

Parameters:
inst_info: pointer to the array that will be filled with

information about inDART-One instruments
connected to the USB bus.

n_items: number of instruments to retrieve.
items_found: the actual number of instruments found.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Fills an array (inst_info) with information about inDART-One
instruments connected to the USB bus. The function returns
n_items. The items_found variable will contain the actual number
of inDART-One instruments found.
Tip: you can first call:

IPL_GetInstrumentsConnected(NULL, 0, *no_of_inst);

9

inDART Programming Library

112

to get the number of all of the inDART-One instruments connected to
the USB bus, and then call:

IPL_GetInstrumentsConnected(*tot_inst, no_of_inst,

NULL);

to retrieve information about all of them.

9

inDART-One User's Manual

113

9.5.9 IPL_GetInstrumentStatus()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_GetInstrumentStatus(

int inst_ID,
IPL_INST_STATUS *status);

Parameters:
inst_ID: ID of the inDART-One instrument (previously set

via the IPL_SetInstrumentConfiguration()
function).

status: pointer to an IPL_INST_STATUS structure that will
receive status information.

Return value:

TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Returns status information for the specified instrument. This function is
useful to retrieve the result of reading (IPL_ReadDeviceMemory()
function) or programming (IPL_StartProgramming() function)
operations.

9

inDART Programming Library

114

9.5.10 IPL_GetVersion()

Include file:

#include “IPL-One.h”

Function prototype:
void IPL_GetVersion(char *ver);

Parameters:
ver: this parameter will be filled with a string containing the

version of the IPL-One DLL and related DLLs.

Return value:
None.

Description:
Call this function to get version information about the IPL-One
Programming Library and related DLLs.

9

inDART-One User's Manual

115

9.5.11 IPL_LoadFileIntoBuffer()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_LoadFileIntoBuffer(

const char *filename,
IPL_FILE_FORMAT file_format,
unsigned long file_offset,
unsigned long buffer_offset);

Parameters:

filename: file to load into the programming buffer.
file_format: file format. Can be one of the following constants:

� IPL_FORMAT_BINARY (for binary files);
� IPL_FORMAT_IHEX (for Intel-Hex files);
� IPL_FORMAT_S19 (for Motorola S-Record

files).

file_offset: offset (in bytes) from the beginning of the file. That

is, the first file_offset bytes read from the file
are discarded. Valid only when file_format is
IPL_FORMAT_BINARY.

buffer_offset: offset (in bytes) from the beginning of the
programming buffer. That is, the programming
buffer is filled starting from the buffer_offset
address. Valid only when file_format is
IPL_FORMAT_BINARY.

Return value:

TRUE: the function was successful.

9

inDART Programming Library

116

FALSE: an error occurred. Call the IPL_GetError()
function to get extended error information.

Description:

Loads the contents of an external file into the programming buffer.

9

inDART-One User's Manual

117

9.5.12 IPL_ReadDataFromBuffer()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_ReadDataFromBuffer(

unsigned long addr,
unsigned char *dest_data,
int len);

Parameters:

addr: programming buffer start address.
dest_data: pointer to a destination buffer which will contain the

data copied from the programming buffer.
len: number of bytes to copy.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Reads data from the programming buffer. Since the programming
buffer is a one-to-one mapping of the target device memory, the addr
parameter corresponds to a target device memory address.

9

inDART Programming Library

118

9.5.13 IPL_ReadDeviceMemory()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_ReadDeviceMemory(int inst_ID);

Parameters:
inst_ID: ID of the inDART-One instrument (previously set

via the IPL_SetInstrumentConfiguration()
function) to read from.

Return value:

TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Reads the memory of target device connected to the inst_ID
instrument and copies it into the PC programming buffer. The
programming buffer can then be read with the
IPL_ReadDataFromBuffer() function.
To check the status of the reading operation, call the
IPL_GetInstrumentStatus() function.

9

inDART-One User's Manual

119

9.5.14 IPL_SetCallback()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_SetCallback(IPL_CALLBACK callback);

Parameters:

callback: callback function.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Sets the callback function that will be called by the Programming
Library each time a meaningful event occurs. The callback function
prototype is:

void (*IPL_CALLBACK)(

int inst_ID,
IPL_EVENT_TYPE event_type,
void *event_data);

where inst_ID is the instrument that generated the event,
event_type is the type of event and event_data is additional
information regarding the event (if available).
Possible events are summarized in the table below.

9

inDART Programming Library

120

Event (event_type) Description

IPL_EVENT_PROG_START Occurs after the IPL_StartProgramming()
function is called. No event information is passed
to the callback function (event_data is NULL).

IPL_EVENT_PROG_END Occurs at the end of programming, i.e. after all of
the programming steps are performed. No event
information is passed to the callback function
(event_data is NULL).

IPL_EVENT_PROG_STEP Repeatedly occurs when a programming step is
being performed. Programming step’s information
(programming step type and completion
percentage) is passed to the callback function
(event_data is a pointer to a
IPL_EVENT_PROG_STEP_DATA structure).

IPL_EVENT_ERROR Occurs when there is a programming error. Call
the IPL_GetInstrumentStatus() function
to get error information. No event information is
passed to the callback function (event_data is
NULL).

Table 9.1: IPL Callback Events

i

Note: in order to avoid recursion when handling
events, do not call IPL functions that can cause other
events to happen.

9

inDART-One User's Manual

121

9.5.15 IPL_SetCommunicationSettings()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_SetCommunicationSettings(

char *settings,
BOOL show_window);

Parameters:

settings: pointer to a buffer containing the initialization
string.

show_window: if set to TRUE, opens the “Communication Settings”
dialog box, where you can specify all of the target’s
communication settings. Upon exiting the
“Communication Settings” dialog box, the
settings parameter is filled with the information
coming from the dialog box. If set to FALSE, the
settings parameter must be manually specified.

Return value:

TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Initializes inDART-One with target device information. This
initialization procedure must be done before calling any other function
that reads from/writes to the target device.

9

inDART Programming Library

122

9.5.16 IPL_SetDevice()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_SetDevice(const char *device_code);

Parameters:

device_code: the string containing the complete device code.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Sets the target device to be programmed. To retrieve a list of
supported devices, call the IPL_GetDeviceList() function.

9

inDART-One User's Manual

123

9.5.17 IPL_SetInstrumentConfiguration()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_SetInstrumentsConfiguration(

IPL_INST_CONFIG *config,
int n_items);

Parameters:
config: pointer to the array that specifies instrument

configuration.
n_items: number of instruments to configure.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Configures one or more inDART-One instruments. The config
parameter is a pointer to an array of IPL_INST_CONFIG structures
which associate each instrument’s serial number to a logical ID.

i

Note: this function can be called only once between
an IPL_StartSession() and IPL_EndSession()
block.

9

inDART Programming Library

124

9.5.18 IPL_SetProgrammingSteps()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_SetProgrammingSteps(

IPL_PROG_STEP *prog_steps,
int n_items);

Parameters:
prog_steps: pointer to the array that specifies the programming

steps.
n_items: number of programming steps in the array.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Sets the programming steps to be performed when calling the
IPL_StartProgramming() function. To retrieve the default
programming steps available for the currently selected target device,
call the IPL_GetDefaultProgrammingSteps() function.

i

Note: programming steps will be performed in a fixed,
pre-defined order, regardless of their order in the
prog_steps array. E.g., a blank check operation will
be always performed before an erase operation, a
verify operation will be always performed after a
program operation, etc.

9

inDART-One User's Manual

125

9.5.19 IPL_StartProgramming()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_StartProgramming(int inst_ID);

Parameters:
inst_ID: ID of the inDART-One instrument (previously set

via the IPL_SetInstrumentConfiguration()
function).

Return value:

TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Starts the programming in the specified instrument. The instrument
will perform the programming steps specified with the
IPL_SetProgrammingSteps() function.
To check the status of the programming, call the
IPL_GetInstrumentStatus() function.

9

inDART Programming Library

126

9.5.20 IPL_StartSession()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_StartSession(void);

Parameters:
None.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Starts a programming “session”. All of the Programming Library
functions (exception made for the IPL_GetVersion() function)
must be called within an IPL_StartSession() and
IPL_EndSession() function.

The IPL_StartSession() function detects all inDART-One
instruments connected to the USB bus and determines whether fast
programming algorithms are unlocked.

9

inDART-One User's Manual

127

9.5.21 IPL_WriteDataToBuffer()

Include file:

#include “IPL-One.h”

Function prototype:
BOOL IPL_WriteDataToBuffer(

unsigned long addr,
unsigned char *src_data,
int len);

Parameters:

addr: programming buffer start address.
src_data: pointer to a source buffer containing the data to be

copied to the programming buffer.
len: length (in bytes) of the source buffer.

Return value:
TRUE: the function was successful.
FALSE: an error occurred. Call the IPL_GetError()

function to get extended error information.

Description:
Writes data to the programming buffer. The contents of the
programming buffer will be programmed into the target device with the
IPL_StartProgramming() function. Since the programming buffer
is a one-to-one mapping of the target device memory, the addr
parameter corresponds to a target device memory address.

10

inDART-One User's Manual

129

10 Troubleshooting

10.1 Common Problems and Solutions

This section reports some common problems that may arise during general
use. Please be aware, however, that working with a specific target device
may cause device-specific issues.

10.1.1 USB Driver Problems
If you connected inDART-One to the PC before installing the inDART-One
utilities, the instrument’s USB driver may not have been correctly installed on
your system. Unplugging and replugging the USB cable is of no use, since
Windows has marked the device as “disabled”. As a consequence, the PC
cannot communicate with inDART-One.
To restore the USB driver (provided the inDART-One utilities have been
installed), perform the following steps under Windows XP:

1. Connect inDART-One to the PC.
2. Open the Control Panel (“Start > Settings > Control Panel”).
3. Open the “System” options.
4. Select the “Hardware” tab.
5. Click the “Device Manager” button.
6. The “inDART-One” device will be shown with an exclamation mark

next to it. Double click on this device.
7. In the “General” tab, click the “Reinstall Driver” button. Follow the on-

screen instructions.

10.1.2 Communication Can’t Be Established with inDART-One
1. Make sure that inDART-One is connected to the PC and powered on.

inDART-One is powered by the USB connection.

10

inDART-One User's Manual

130

2. Make sure that the target board is powered on and the target
microcontroller is working. Programming and debugging rely on a
MON08/BDM communication between inDART-One and the target
board. This means that, in order to work correctly, the target
microcontroller must be running. In particular, make sure that:

� The MON08/BDM cable is connected to the target board.
� All of the required MON08/BDM connector signals are correctly

tied to the target microcontroller.

3. Make sure you are working with the correct inDART hardware model.

a) To view/change the inDART hardware model in use in
CodeWarrior, choose “Connect” (or “Communication”) from the
“inDART-HC08”, “SofTec-HCS08”, “SofTec-RS08” or “inDART-
HCS12” menu (depending on the target device currently selected)
in the CodeWarrior debugger window.

b) To view/change the inDART hardware model in the DataBlaze
programming utility, select the “Operations > Select Device”
menu item.

c) To view/change inDART-One instruments in the MultiBlaze gang
programming utility, choose the “New Project” or “Modify
Project” options.

10.1.3 CodeWarrior-Specific: Stepping Execution is Slow
When the “Memory” window is open, step commands may execute slower,
since the “Memory” window contents need to be refreshed after every step.

10.1.4 HC08-Specific: Peripheral Speed is Low
The “Frequency divider” parameter (in the “Communication Settings”
dialog box) should always be set to 4 in order to guarantee that, in monitor
mode, all of the target microcontroller’s peripherals run at the same speed
they do in user mode. If, however, you set this parameter to 2 not all
peripherals will work at this doubled speed.

10

inDART-One User's Manual

131

10.1.5 HCS08-Specific: Communication Lost During Debugging
This problem may have several causes:

1. The microcontroller’s bus frequency has been changed by the user

application and the CLKSW bit is set to 1. In this case, set the CLKSW
bit to 0 (in the “Communication Settings” dialog box).

2. The BKGDPE bit in the SOPT (System Option Register) register has
been set to 0, configuring the BKGD pin as a generic I/O pin. The
BKGD pin must be reserved for the BDC communication (BKGDPE =
1).

3. A microcontroller reset has occurred. Among other things, this may be
caused by the COP peripheral. After reset, the COP is enabled, so your
program must either disable it or reset its timer.

10.1.6 HCS08-Specific: STOP Assembly Instruction Causes a
Microcontroller Reset

If the STOPE bit in the SOPT register is not set, the STOP instruction is
recognized as an illegal opcode, causing the microcontroller to reset. The
SOPT register can be written only once after reset.

10.2 Diagnostic Test

inDART-One has built-in self-test capabilities. This means that you can verify
by yourself, at any time, the correct operation of the instrument’s hardware.
To perform the diagnostic test:

1. Open the inDART-One Control Panel. Select “Start > Programs >

SofTec Microsystems > inDART-One > Control Panel”. The
following dialog box will appear.

10

inDART-One User's Manual

132

Figure 10.1: inDART-One Control Panel

2. Click the “Diagnostic Test” button and follow the on-screen
instructions.

i

Note: before to start the diagnostic test, make sure that only
one instrument is connected to the PC and that no target
system is connected to the instrument.

10.3 Getting Technical Support

For technical assistance, documentation and information about products and
services, please refer to your local SofTec Microsystems partner.
SofTec Microsystems offers its customers a free technical support service at
support@softecmicro.com. Before getting in contact with us, we advise you
to check that you are working with the latest version of the inDART-One
system software (upgrades are available free of charge at
http://www.softecmicro.com). Additional resources can be found on our
online discussion forums (http://www.softecmicro.com/forum).

11

inDART-One User's Manual

133

11 Technical Specifications

Parameter Value

General

Operating Voltage 5 V DC (provided by the USB bus)

Power Consumption 350 mA (max)

MON08 Section

“TARGET POWER” connectors maximum
accepted ratings
(when “POWER OUT” = “POWER IN”)

42 V DC, 5 A

“TARGET POWER OUT” connector
maximum ratings
(when “POWER OUT” = VDD)

5.0 V DC, 200 mA
3.3 V DC, 100 mA
2.7 V DC, 100 mA
1.8 V DC, 100 mA

MON08 connector VDD signal maximum
ratings
(standard MON08 mode, pin 15)

5.0 V DC, 200 mA
3.3 V DC, 100 mA
2.7 V DC, 100 mA
1.8 V DC, 100 mA

MON08 connector OSC signal
(standard MON08 mode, pin 13)

12 MHz, GND to VDD, 50% Duty Cycle

BDM Section

BDM connector VDD signal (pin 6) 1.8 V DC to 5.5 V DC, 5 mA max

BDM connector BKGD signal (pin 1) 50 MHz max at 5 V DC

Table 11.1: Electrical Specifications

11

inDART-One User's Manual

134

Parameter Value

Dimensions 140 x 102 x 40 mm

MON08 connector type 16-pin, 2.54-mm pitch, dual row header (male)

BDM connector type 6-pin, 2.54-mm pitch, dual row header (male)

Target power connectors type Coaxial power jack, center pin (positive) = 2.1 mm,
outer sleeve = 5.5 mm

Operating temperature 0°C to 50°C

Storage temperature 0°C to 70°C

Humidity 90% (without condensation)

Table 11.2: Physical and Environmental Specifications

Copyright © SofTec Microsystems®. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
Designed by

	Before Starting
	Important Notice to Users
	Required Skills

	Overview
	What is inDART-One?
	In-Circuit Debugger
	Single Programmer
	Multiple Programmer
	inDART Programming Library

	Package Contents
	Optional HC08 Fast Programming Algorithms
	Hardware Overview
	USB Connector
	MON08 Connector
	BDM Connector
	Target Power Connectors
	Status LEDs
	“START” Push-Button

	Software Overview
	CodeWarrior Development Studio Special Edition
	DataBlaze Programming Utility
	MultiBlaze Programming Utility
	inDART-One Control Panel
	Software Upgrades

	Recommended Reading
	Getting Technical Support

	Setup
	Software Setup
	Host System Requirements
	CodeWarrior Setup
	inDART-One Utilities Setup

	Hardware Setup
	PC Connection
	Target Connection
	Communication Settings

	Unlocking Fast Programming Algorithms

	Debugging
	inDART-One Working Principles
	Working with CodeWarrior
	Using the Project Wizard to Create Your Application Skeleton
	Starting your First Debugging Session
	Using Existing Projects with inDART-One
	Breakpoints and Trace

	HC08 Notes and Tips
	Stop Command Handling
	Breakpoints and Swi Instruction
	Reading Peripheral Status
	Interrupt Execution during Steps
	Peripheral Status during Steps

	HCS08, RS08 and S12(X) Notes and Tips
	Entering Debug Session with CodeWarrior
	Reading Peripheral Status
	Breakpoints and BGND Instruction
	Real-Time Memory Update

	Programming
	DataBlaze Programming Utility
	Overview
	Using DataBlaze
	Using HC08 Fast Algorithms

	MultiBlaze Gang Programming Utility
	Overview
	Starting MultiBlaze
	Creating a Project
	Programming
	Using HC08 Fast Algorithms

	BDM Programming Notes

	Working with HC08 Devices
	Debugging Limitations
	Communication Settings
	MON08 Configuration
	Power Settings
	Programming
	Trimming

	MON08 Target Connections
	Standard MON08 Connections
	Enhanced MON08 Connections
	MC68HC908AB Family Connections
	MC68HC908AP Family Connections
	MC68HC908AS Family Connections
	MC68HC908AZ Family Connections
	MC68HC908BD Family Connections
	MC68HC908EY Family Connections
	MC68HC908GP Family Connections
	MC68HC908GR4/4A/8/8A Connections
	MC68HC908GR16 Connections
	MC68HC908GR16A/32A/48A/60A Connections
	MC68HC908GT Family Connections
	MC68HC908GZ Family Connections
	MC68HC908JB8 Connections
	MC68HC908JB12/16 Connections
	MC68HC908JG Connections
	MC68H(L)C908JK Family Connections
	MC68H(L)C908JL Family Connections
	MC68HC908JW Family Connections
	MC68HC908KX Family Connections
	MC68HC908LB Family Connections
	MC68HC908LD Family Connections
	MC68HC908LJ Family Connections
	MC68HC908LK Family Connections
	MC68HC908LT Family Connections
	MC68HC908LV Family Connections
	MC68HC908MR Family Connections
	MC68HC908QB Family Connections
	MC68HC908QC Family Connections
	MC68HC908QF Family Connections
	MC68HC908QL Family Connections
	MC68H(L)C908QT Family Connections
	MC68H(L)C908QY Family Connections
	MC68HC908RF Family Connections
	MC68HC908RK Family Connections
	MC68HC908SR Family Connections

	Working with HCS08 Devices
	Communication Settings
	BDM Clock
	Fast Programming
	Trimming
	Other Settings

	Working with RS08 Devices
	Communication Settings
	Target Communication
	Trimming
	Other Settings

	Working with S12(X) Devices
	Communication Settings

	inDART Programming Library
	Introduction
	The inDART Programming Library (IPL)
	Installation
	Programming Library Reference
	Using the Interface Library Functions
	Return Values of the Programming Library Functions
	Programming Buffer

	Function Reference
	Typedefs and Structures
	IPL_EndSession()
	IPL_GetBufferChecksum()
	IPL_GetButtonStatus()
	IPL_GetDefaultProgrammingSteps()
	IPL_GetDeviceList()
	IPL_GetError()
	IPL_GetInstrumentsConnected()
	IPL_GetInstrumentStatus()
	IPL_GetVersion()
	IPL_LoadFileIntoBuffer()
	IPL_ReadDataFromBuffer()
	IPL_ReadDeviceMemory()
	IPL_SetCallback()
	IPL_SetCommunicationSettings()
	IPL_SetDevice()
	IPL_SetInstrumentConfiguration()
	IPL_SetProgrammingSteps()
	IPL_StartProgramming()
	IPL_StartSession()
	IPL_WriteDataToBuffer()

	Troubleshooting
	Common Problems and Solutions
	USB Driver Problems
	Communication Can’t Be Established with inDART-One
	CodeWarrior-Specific: Stepping Execution is Slow
	HC08-Specific: Peripheral Speed is Low
	HCS08-Specific: Communication Lost During Debugging
	HCS08-Specific: STOP Assembly Instruction Causes a Microcont

	Diagnostic Test
	Getting Technical Support

	Technical Specifications

