Robotics!

Student Guide for Experiments #1 through #4

Version 1.2

Note regarding accuracy of this text:

Many efforts were taken to ensure accuracy of this text and the
experiments, but the potential for errors still exist. If you find errors
or any subject requiring additional explanation please report this to
stampsinclass@parallaxinc.com so we can continue to improve the
quality of our documentation.

PARALLA

N
PN

A

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been altered
or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. If you decided to use the
name BASIC Stamp on your web page or in printed material, you must state that "BASIC Stamp is a registered trademark of Parallax,
Inc." Other brand and product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products. You take full responsibility for your BASIC
Stamp application.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

E-mail: stampsinclass@parallaxinc.com
Ftp: ftp.parallaxinc.com and ftp.stampsinclass.com
Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps. The BASIC Stamp list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answersto the list are
distributed to all subscribers. It's a fun, fast, and free way to discuss BASIC Stamp issues and get answers to technical questions. To
subscribe to the BASIC Stamp list, send e-mail to majordomo@parallaxinc.com and write subscribe stamps in the body of the
message. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list go to
http://www.stampsinclass.com and look for the E-groups list. This list generates about 5 messages per day.

Contents

Table of Contents
=Y 1T N 3
AUAIENCE ANA TEACHET'S GUILES ...c.cvreererreerieneceieeeiereeseieesseeeesse e esseaseesse e ssse s esseaseesse e e s essessesssessesssessessees 3
Copyright aNd REPIrOGUCTION.......ccucvuieeiericecreictsiseisetiseiseestiseiseisesssiseisssssssessstssssssssssssssssessmsesssssessssssssssssssssnsssessssnsses 4
SPECIAI CONEIIDULOIS .uvveirieieicieieicise ittt ettt sss s s s sssssssasssssassssmmesssbestsebstsebnssssssbsstsebasssessnsans 4
Experiment #1: Boe-Bot Construction.............. 5
PArtS REQUITE....ceeeeeeereereereireireineiseiseiseiseiseissiseissiseissisessssssssesssasesssssssssssssssssssssssssssssssmsessssssssssssssssssssssssssssnsssessssssssssasses 6
Step #1: Servo Modification @and TESHING ..ot sssssessessessesemesssssessssssssessessessesses 7
Step #2: Mounting Servos and Wheels on Boe-Bot Platformceeieneneneneineineisesssesessisessessesssinns 12
Step #3: Install Tail Wheel and Battery HOIAEEceueiririneireineineieieieiseiseissiseiseisessessesssssssssesssssssessesssssessessens 14
Step #4: Mounting the Board of Education and Connecting the SErvosneneneneieenessesseseiseis 15
Step #5: Programming the Boe-Bot for Basic Movement Pattern.........oevveeeicenineneineineineineieessssessesessenns 18
CRAIIENGE ...ttt ettt bbb s s s s s bbb bbb se bt s e s s bt sebsn bt ssassbasbsebssbustebsnbsntsassnssnins 20
Experiment #2: Basic Movement Using Subroutines and Memory............cuueiicisveeiccssneeccsssneeccsssnneees 22
Pulsout Command and SErvo CONTIOL ... essesesssesesssessesemessesssesessssssssssssenes 23
PArtS REQUITEM.......ceeeeeeeeeeeereeetreiteseieteieist sttt sttt bbbt b bbbt 24
BUIA Tttt tets e s eb st bbb b bbb bbb st sttt 25
PrOGIAM .ottt es s eases st esseas s ses s ssesses st s s st bbb st bbb s bbbt s bbbt 26
SOUNT FEEADACK ...t ess e ses st esstsseb st s st ean bbbt s bbb s bbb 26
LED FEEADACKcueueuieenieineeeiee ettt eaeese s esesasesesasesesssessesssssesesasesssssmme s s s e s bbb s st bsssesessncs 27
DiIStANCE CAlIDIALION ...eceeveeeeeeeceeeeneeieieiee ettt sesseasessess s sessessess bbb s s s bbb b bbb 27
IMAKING TUMNIS oottt s e e e e st st se b s bbbttt b st 29
GOLO STALEMENToceeeeeeeeeeeeeeieeeee ettt sttt s bbb s bbbt st bbbt 29
GOSUD: A ClOSE RElAtive OF GOTO.....ueueueceeeiceeireeieieeeieseeieseeisessesstasessessessess st st sess i s s bbb sasasesasenes 30
Using the Data Command and EEPROM to Store MoVEMENtS.........ccvevvevereeneenceneeneneineineineineeeeeseessessessessesssennes 32
AlLTOGEETNET NOW .cceveieieeneieeneineneeiseieeieeiseseeasesseasessesstasesstssessessessessessssstss bbb ses s ss s sn bbb s bbb bbbt bbb 33
CRAITENGE ..ottt e e b et b bbb st b st b bbb s bbb 36
Experiment #3: FOHOWING LGNtcuuueeeriiiiiiiinnrrnnnriiiinnninnssnenniiicsssssssnssssissssssssssssssssssssssssssssssssssssses 38
PartS REQUITEM.......ceeeeeeeeeeeeereieiseiteseiet ettt st st e s s st b bbb 39
BUILA Tttt b s eb st s bbb bbbt bbb sttt 39
PROGIAM .ottt sttt es st es s b ses bbb bbbt b bbb s s bbbt s bbbt 41
USING the PROTOIESISTON ...ttt eseese s eseessessesseasesstss s bbb s i bbb s bbb bass e bastacs 41
CRAITENGE!.....oeeeeeeetete ettt e s b et b bbb s bbbt bt se bbbt 46

Robotics! Student Guide Version 1.2 » Page 1

Contents

Experiment #4: Infrared ObjJect DeteCtion..........ccccciiirrrrseesiicccssscsssnnssssiccsssssssssssssssessssssssssasssssssssssses 47
INFrAr@d TRANSIMISSION c....ucvueveeireireieieieieieieteisese ettt sssssesssssessssssssssasssssssasssasssssssssmasssesesssessssssssssasssasnsssessssnsses 47
INFrAr@d RECEPLION c..cucveeieieieiiietieiictsistististiseseististisesssastssesssbssassssessassssssssssssssassssssssmss st sebestsebsbsssssbastsnsasssessssnssns 48
BUILA ettt ases et ssse s ss s es s ss e e s es s s e e s s st saes s snees 48
PrOGIAM Heceeieieiiiite ettt sasss s s s sssasssasassssssssessassasssssssssebse s sbsesssbsessnsssssebanssassnsssssnsantss 50
Infrared TranSmMit @N0 RECEIVEcvevririririirinireisiiseiseiseiseiseiseissisessessssssssssssssssssssssssssssssssmessssssssesssssssssssessessssseses 50
TrOUDIESNOOLING c..vovrvieieiaieeiiesiieististstistissiseissiseissasteseassssessesssbsssssbssssssssssssssbsesssssesssssmsesssssesssssassssssssnsssssssssssessssssssnss 55
CRAITENZE! .ottt s bbbt R stk sk skt se kbbbt kbbbt nbas 56

Appendix A: Parts Listing and Sources.................. a7

Appendix B: ResSiStor COlOr COUEuuueiiiiieriinnrrrnrrriiccssssssnnessiecsssssssssssssssesssssssssssssssssssssssssssssssssssse 63

Appendix C: Changing the Board of Education Voltage Regulatoreceeiiieciiinccnnneriieccsssscnnanennned 65

Appendix D: Boe-Bot Competition RUIES.........ueeeeriiiccrinnsrsnnnriicccsssssssnnensiiicssssssssssssssssssssssssssssssssses 67

Page 2 * Robotics! Student Guide Version 1.2

Preface

Preface

The goal of the Robotics curriculum is to show students how easy it is to become interested and
excited about the fields of science, information and engineering as they design, construct and program an
autonomous robot. The Board of Education Robot (Boe-Bot) provides students with a project area to build
and customize their own mechanical, electrical, and programming project. The use of a robot to introduce
microcontroller circuits and interfacing is ideal since the outputs are almost entirely visible and easy to
customize.

The Board of Education may be taken off of the Boe-Bot base and used for other Stamps in Class
curriculum experiments. This portability saves the class from purchasing another set of hardware and reduces
the cost of exploring robotics. The Board of Education was not originally designed for use on a robot (Boe-Bot
was created in response to customer demand), so you will notice one or two work-arounds that wouldn't
exist if a robot had been considered when the Board of Education was conceived. Specifically, the servos use
the unregulated 6 V power supply from the Vin instead of the regulated Vdd. In conjunction with a 3300 uF
capacitor between Vss and Vdd this prevents resets on the BASIC Stamp. Older boards may also need to have
their voltage regulator swapped out for the new LM2940 low-dropout regulator. Details for this are shown in
Appendix C, and the replacement parts are free from Parallax.

The Robotics curriculum will be revised and updated based on feedback from students and
educators. If you would like to author an addition to this curriculum, or have ideas for improvements, please
send them to stampsinclass@parallaxinc.com. We'll do our best to integrate your ideas and assist you with
whatever technical support, sales support, or on-site training you need. If we accept your Boe-Bot project
we'll send you a free Boe-Bot.

Audience and Teacher's Guide

The Robotics curriculum was created for ages 17+ as a subsequent text to the "What's a
Microcontroller?" guide. Like all Stamps in Class curriculum, this teaches new techniques and circuits with
minimal overlap between the other texts. Topics introduced in this series are EEPROM data storage,
mechanics of basic robotics, servo control, infrared obstacle detection and communication, and the use of
photoresistors.

The depth and availability of a Teacher's Guide varies between the Stamps in Class curriculum.
Because experts in their field independently author each set of experiments, and they are provided leeway in
terms of format. Please call if you have any questions.

Robotics! Student Guide Version 1.2 * Page 3

Preface

Copyright and Reproduction

Stamps in Class curriculum is copyright U Parallax 1999. Parallax grants every person conditional
rights to download, duplicate, and distribute this text without our permission. The condition is that this text
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody would profit from duplication of this text. Preferably, duplication
would have no expense to the student. Any educational institution wishing to produce duplicates for their
students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated to any other language with the permission of Parallax, Inc.

Special Contributors

Chuck Schoeffler Ph.D. at the University of Idaho authored portions of this curriculum in conjunction
with Parallax, Inc. Chuck is a professor in Ul's Industrial Technology Education department. He specializes with
mechanical and electrical designs, and without question one of his hobbies is robotics and the BASIC Stamp.
Chuck designed the original Board of Education Robot (Boe-Bot) shown below and many similar robot
derivatives with unique functions. After several versions, Chuck's design was adopted as the basis of the
Parallax Boe-Bot that is used in this Robotics curriculum. Chuck teaches robotics to all levels, ranging from
high school students to his summer workshops with
teachers. On free time he is known to be fixing
automobiles for his family and riding his motorcycle in
the hills around Moscow, Idaho. You can reach Chuck by
e-mail anytime at chucks@uidaho.edu. Parallax is very
appreciative of his involvement with the Stamps in Class
program.

Special thanks also to the Parallax team who
provided ideas and content for the program, particularly
Russ Miller. Russ designed the Parallax Boe-Bot based
on Dr. Schoeffler's input. The entire Parallax staff that
designs, manufacturers, and accepts orders and
packages the Stamps in Class products is a key part of
the Stamps in Class program.

Page 4 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Robots are wused in the auto industry, medical,
Experiment #1: manufacturing plants, and of course science fiction films.
Building and programming a robot is a combination of
Boe-Bot . mechanics, electronics, and problem solving. What you're
Construction about to experience with the Boe-Bot will be applicable to
realistic applications using robotic control, the only
difference being the size and sophistication. The electronic control principles, source code, and circuits you
will use are very similar (and sometimes identical) to industrial applications developed by electronic engineers.

The word "robot" first appeared in a Czechoslovakian satirical play Rossum's Universal Robots by Karel Capek
in 1920. Robots in this play tended to be human-like. From this point it seemed that any good science fiction
story would involve them revolting against human authority, which requires intelligence. This changed when
General Motors installed the first robots in their manufacturing plant in 1961. For science fiction or
manufacturing, intelligence is only installed in a robot through programmability.

This series of Robotics experiments will introduce you to basic robotic concepts and programming using the
Board of Education Robot (hereafter the "Boe-Bot"). The experiments will begin with construction of the Boe-
Bot. After that we'll be programming the Boe-Bot for basic maneuvers, and proceed to interface sensors that
will allow the robot react to it's surroundings.

Robotics! Student Guide Version 1.2 « Page 5

Experiment #1: Boe-Bot Construction

A Boe-Bot can take many different forms of construction, and it
Parts doesn't have to use the Parallax Boe-Bot chassis with a Board of
Required Education and BASIC Stamp. One approach might be to build a rolling

breadboard with servos attached using double-sided tape, and
another might be to carve a robot base from a piece of plastic
irrigation pipe. If you are using a BASIC Stamp Il and the schematics
and source code included in this series of experiments your robot would work fine and be just as unique. It
might look different than the Boe-Bot, but that's appropriate since the design has a lot do to with creativity.

If you're using the Boe-Bot from Parallax, you'll need the following parts for this experiment (all are in the
Robotics Parts Kit):

(1) Boe-Bot chassis

2 Two standard servos (Futaba S-148s or those supplied with the Robotics Parts kit)
2 plastic wheels

2 O-ring tires

(1) polyethylene ball wheel

(1) cotter pin to hold wheel on chassis

(8) 4-40 3/8" machine screws

(8) 4-40 1/4" machine screws

(2) 4-40 3/8" flathead screws

(10) 4-40 nylon insert locking nuts

4) 1/2" standoffs

(1) grommet 13/32" inner diameter (fits 1/2" hole)

2) grommet 9/32" inner diameter (fits 3/8" hole)

(1) AA battery pack holder with 9" of wire and 2.1 mm plug
2) 10K ohm resistors

2) 3-pin headers to plug the servos into the Board of Education
(1) 3300 uF capacitor

(1) Board of Education and BASIC Stamp II

Pictures of these parts are shown on the back cover of this text in color, along with quantities and Parallax
stock code in case you need specific replacements.

Page 6 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Build It! Boe-Bot construction requires a small Phillips screwdriver, 1/4"
) box-end wrench or small pliers, and small diagonal cutters.
Constructing the Boe-Bot consists of five parts:

Step #1: Mechanical modification of the servos to provide continuous rotation and testing them for use as
a robot chassis drivetrain;

Step #2: Mounting the servos on the robotics platform and attaching the wheels;

Step #3: Attaching the tail wheel and battery holder;

Step #4: Mounting the Board of Education and BASIC Stamp on the completed platform and connecting
the servos to the BASIC Stamp; and

Step #5: Programming the Boe-Bot with some sample source code to verify that it works.

Step #1: Servo Modification and Testing

Servo Modification

The Boe-Bot uses two modified servos originally developed for use in radio controlled (R/C) model airplanes.
The Parallax servos or the Futaba-S148 provide low cost, easy-to-modify gear motors that let the platform
move continuously. Most hobby servos are usually designed to move about 90° to 180° total. The servos
respond to a pulse width modulation signal (PWM) that you send to it using the BASIC Stamp. This is
accomplished using the pul sout command.

Modifying the servos takes only a few minutes and requires a Phillips screwdriver, diagonal cutters, and a little
careful disassembly. This modification can be reversed at a later date to return to the 90° to 120° angle if you
save the small plastic drive plate (we're going to remove it), but you'll need to be careful not to damage the
internal parts by turning the output shaft too far.

The servos have a control horn attached to the main output shaft that is secured in place with a Phillips
screw. Turn the servo horn with your fingers until it stops so you have an idea of the physical limitation. We
need to modify it so that the control horn will rotate continuously.

Remove the small Phillips screw holding the control horn on the servo. The shaft has splines on it, so you will
have to apply upward pressure and then wiggle the control horn off. Look at the bottom of the servo and find
the four Phillips head screws on the bottom of the case because you will need to remove those in addition to
the one Phillips screw that was holding the control horn on the main output gear.

Robotics! Student Guide Version 1.2 » Page 7

Experiment #1: Boe-Bot Construction

Figure 1.1: Servo Case Removal
Remove the top case by unscrewing the screw on the

2nd final gear control horn and the four small screws holding the top
3rd case onto the bottom.
gear gear
E— stop tab
1 | —
1st
gear

The bottom plate of the servo will come off at this point so look at the control circuitry. You won't need to do
any soldering unless you break a wire off. Hold your finger on the output gear shaft and press down (the one
that the control horn was on) and carefully pry and wiggle the top of the servo case up and remove it. Work
slowly so the gears all stay in place on their shafts, and try to keep the bottom plate connected to the case.
Once removed your servo should look like Figure 1.1.

The final gear is the one you are going to modify. It's also the one you held down with your finger. You'll need
to remove the 3rd gear in order to access the final gear. Looking at the top of the final gear you'll see a plastic
stop tab that we need to cut off to make the servo turn completely around when we issue commands from
the BASIC Stamp. File, sand or cut the stop tab on the final gear until it is gone (don't sand into the gear
teeth), making sure the area is flush once the tab is gone. The tab is shown in Figure 1.2.

cut the stop tab off
Figure 1.2: Stop Tab Removal with diagonal cutters
Once the final gear has been removed from the servo, \Q
cut or sand the stop tab off the part so that it may

rotate freely. The area around the stop tab needs to be]
very smooth, and free of plastic debris. \ \

final gear

Page 8 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Turn the final gear over and look at the bottom. You will see a metal ring pressed into the plastic, and you
need to pry that out with a small screwdriver, your fingernail or a paper clip. Remove the potentiometer drive
plate. You might want to save this plastic part if you ever want to convert the servo back to its normal mode
of operation (returning the servo to it's original state isn't covered in this text). Insert the metal ring back into
the main gear. Figure 1.3 shows the bottom of the main gear. Don't reassemble your servo once you've
finished this task.

Figure 1.3: Remove Drive Plate from Bottom of Final Gear
This is the bottom of the final gear. Pry out the metal ring and
remove the potentiometer drive plate. Reinsert the metal ring
without the drive plate.

metal ring

Servo Testing and Calibration

At this point your servo is disassembled, and the final gear is removed to expose a metal post which is the end
of a potentiometer. We will be rotating the position of the potentiometer to complete the modification for
continuous rotation. This step is more understandable if you have a brief understanding of how the servo's
internal electronics operate.

A servo is a classic example of a closed-loop feedback system. The servo has an internal potentiometer (the
small metal shaft underneath the final gear) that is coupled to the output gear. Its resistance is proportional
to the position of the servo's output shaft (0° to 120° before modification). This resistance is compared to the
BASIC Stamp's command to generate an error signal when the desired position isn't the same as the current
position. If you send a servo a command to place itself at 90° and the output shaft is actually at 45°, an error
signal will cause the motor to move the output shaft (via the gears) until the error signal is 0 (when the output
has reached 90°). If the output shaft had been at 180°, an error signal of opposite polarity would have been
generated and the motor would have turned in the original direction to bring it 'back’ to 90°. The current
position is 'fed-back' to the servo's control system in a loop to maintain a zero error signal. The farther the
potentiometer is from the desired position, the larger the error signal and, within the limits of the motor and
electronics, the faster the motor turns to bring the error back to zero.

Robotics! Student Guide Version 1.2 » Page 9

Experiment #1: Boe-Bot Construction

By removing the potentiometer drive plate we are opening the control loop. Now when we send a command
to the servo an error signal will still be generated according the difference between the command and
potentiometer positions, but since the potentiometer isn't turned by the output shaft anymore, the motor will
continue to run at the same speed as long as commands are sent. In summary, the modified servo will be
functioning as a variable speed geared motor with a control signal that is very easy for the BASIC Stamp to
generate.

The servo's internal potentiometer must be rotated to be "centered" according to a signal it expects to
receive from the BASIC Stamp. This is done by connecting the servos to your BASIC Stamp and Board of
Education as shown in Figure 1.4, which presents the servo case installed for convenience, though it should
still be removed at this point. Servos have three wires leading from the base: power, ground and control. The
control lead is used to send the positioning signal - the one connected to the BASIC Stamp 1/0 pin.

When preparing this circuit, note that the servos are connected to the Vin (unregulated 6.0 volts) that is
jumpered from the AppMod Connector to the breadboard (see the cover photo). There's also a large 3300 uF
capacitor placed between Vss and Vdd on the top of the breadboard. This is a polarized capacitor, so be sure
it's placed correctly, with the long lead towards Vdd. See figure 1.10 for suggested parts placement.

Use the three-pin headers to plug the servos into the Board of Education. Before you plug the header into the
board make sure the black plastic is centered. This will ensure that it makes contact with the breadboard
nodes and the servo leads. Note that there is an optional resistor between the power and ground. This
resistor prevents short servo movements during "timeouts” when the Boe-Bot is in a sitting stage and the

servos are not being pulsed. vdd
+
Figure 1.4: Servo Calibration Schematic 3300 uF
To test the servo connects the signal wires to I
the BASIC Stamp's P15 and P3 1/0 pins on the Vss =

Board of Education. Place the 3300 uF capacitor \in —red
between Vdd and Vss above the breadboard,

and jumper Vin from the AppMod connector to .

the breadboard for the servo's power supply. white (or yellow) e
©
%]

Servo wire color code: 10K

Vin =red P15 +— L

Signal = white (sometimes yellow) Vss = black

Vss = black

P3 «——

Use the 3-pin connector to plug the servos into Vin e

the Board of Education. Slide the pins to center white (or

them in the plastic part like this: vellow) g
€L
%3]

10K
Vss = black

Page 10 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Before we load some source code into the BASIC Stamp, take a look at the voltage regulator on your Board of
Education. If the voltage regulator is labeled 7805 then you'll need to replace it (details are in Appendix C). If
the voltage regulator is labeled 2940 then continue with this section. Parallax used the 7805 regulators before
the idea for Boe-Bot was created, but switched to the 2940 in order to provide enough current to drive the
servos. (The 2940 has a lower voltage drop and is able to supply plenty of current to drive the servo motors).
If you have a 7805 regulator Parallax will provide a free upgrade kit.

To adjust the potentiometer load the following code into your BASIC Stamp:

"Program Listing 1.1 vl1.2
"Program for calibrating servo to its center using BS-2

center: "establishes a name for this calibration routine
pul sout 15, 750 "sends a pulse of 1.5 milliseconds to the servo
pause 20 "del ay between pulses is 10 ns to 20 ns

goto center

When the code is running, turn the potentiometer shaft until the motor stops. Change the pul sout 15, 750
to read pul sout 3, 750 and adjust potentiometer on the second servo.

So what have you done?

Servos are controlled by sending pulses of specific widths which the servo electronics interpret as positions
using a system called Pulse Width Modulation (PWM). In order to understand this, you need to understand the
terms "milliseconds” (ms) and "microseconds” (us). 1 ms is 1/1000th of a second; or put another way, there
are 1000 ms in every second. 1 ps is 1/1,000,000th of a second, or, there are 1 million pus in each second.
Servo manufacturers usually specify pulse-widths in ps, so it's handy to be able to convert between ps and ms.

The servo electronics are designed to interpret a positive-going pulse with period (width in ms) between
about 1 and 2 ms as a position between 0 and 90 degrees for the output shaft. When you rotated the shaft
back and forth the servo's potentiometer was comparing the pulse width value of 750 (this is 1.5 milliseconds
because the pul sout command works in units of 2 us) to what it expected to receive for the potentiometer's
center position after modification. You rotated the shaft until the two values were equal. At this point the
motor stopped turning even though it was still receiving pulses.

The pulses are repeated about every 20 ms so that a new comparison can be made. The 20 ms repetition

rate is not critical because all of the position information is carried by the pulse length itself, but the servo
was designed to work well with a new pulse every 10 to 40 ms (25 to 100 times/second, or Hz).

Robotics! Student Guide Version 1.2 » Page 11

Experiment #1: Boe-Bot Construction

Check the servo again before putting all the screws back in to see if the servo is indeed stopped when you
sent it the test program. The servo case parts should go back together smoothly and when put together you
should just barely be able to see where the case part joins together.

Step #2: Mounting Servos and Wheels on Boe-Bot Platform

When you're done modifying and testing the servos you can install them in the Boe-Bot base. This is done by
placing the servo spline closest to the center of the chassis. This will let it turn corners in shorter spaces, and
cause less friction on the tail wheel. For maximum stability, you could consider mounting the wheels with the
servo spline closest to the front of the Boe-Bot. Each servo requires four screws and nuts for mounting.

8c.6

!

69.9 (for BobE> ?

o U g
?
¥

[—
I—

561 (SX-Techy 9

75.2

Figure 1.6: Boe-Bot Chassis Front View
The front of the Boe-Bot chassis has additional mounting holes for

94

sensors, scrap printed circuit boards, or whatever you want to build @]
i 3.2
into your Boe-Bot. o832 o o
() B D)
L -

Figure 1.5: Boe-Bot Chassis Top View
The top of the Boe-Bot has mounting holes for the Board of
Education, and places to attach other mechanical robot needs.

Page 12 » Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Figure 1.7: Boe-Bot

Chassis Side View

Mount the servos on each side of the Boe-Bot
chassis, with the spline closest towards the
middle of the chassis.

B 127 _
B 120.4 _
% 121
] 3]
1 u
| 2 \Jg @ go o
= gv R S . > £
) 5
\ ¥
/
4 ¥
- 41,9 o i E:g'[?
494
lis]
5
a3

Figure 1.8: Boe-Bot Back View
The tail wheel is held between the rear gap
with a cotter pin.

28.7

Robotics! Student Guide Version 1.2 » Page 13

Experiment #1: Boe-Bot Construction

The pictures in Figures 1.5 through 1.8 are included with millimeter dimensions in case you would like to build
your own Boe-Bot base, or you can also download dimensioned drawings in Adobe PDF, AutoCad DXF and
AutoCad DWG files from http://www.stampsinclass.com.

The Boe-Bot wheels have been machined with a spline that fits snugly on Parallax and Futaba style servos.

Attach both wheels and replace the small black screw to hold them onto the servos. Once this is finished you
can slide the rubber tires over the wheels.

Step #3: Install Tail Wheel and Battery Holder

Mount the tail wheel using the supplied cotter pin. The battery holder is attached using two flathead screws
and nut. Install the three grommets: two fit in the rear holes and serve as a battery plug holder when it's not
plugged into the Board of Education, and one mounts in the middle top part of the chassis where wires are
threaded through the body. The 9" 2.1 mm coaxial DC power plug should be threaded through the middle hole
of the Boe-Bot so you can connect it to the Board of Education. Bring all wires through the middle grommet
hole. Figure 1.9 shows the completed undercarriage (this picture does not show the middle hole).

Figure 1.9: Boe-Bot Bottom Side View

Servos, battery pack, and tail wheel should be
mounted at this point. Bring the wires towards the
top of the Boe-Bot. This Boe-Bot has the wheels
closest to the front, but the robot turns tighter if
they are mounted in the reverse fashion.

Page 14 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Step #4: Mounting the Board of Education and Connecting the Servos

Mount the Board of Education ("Boe" part of Boe-Bot) on the robot chassis base with eight 4/40 machine
screws and standoffs. The breadboard should be closest to the front of the chassis, centered directly in
between the two wheels. This will allow sensors to be mounted in a position where they can respond to the
physical environment in front of the Boe-Bot.

Once this is done, re-connect the servos as shown in Figure 1.4. You'll need to use the two three-pin posts to
plug the servos into the breadboard, and jumper them over to Vss and Vin. The finished Boe-Bot should
roughly resemble the one shown in Figures 1.11 to 1.14.

Figure 1.10: Boe-Bot Suggested Wiring Placement
Once this circuit is built on your Boe-Bot it will be
ready for simple rolling patterns.

Vdd Vss
@ » ©

Servo

@| < White
plsle———— | ©
{

@®| <+ Red

P14 ® |@] <- Black
P13

P12
P11
P10
P9
P8
pP7
P6
P5

P4
P3 servo
@| < White
P2
@| <+Red
@| <-Black

P1
PO

(AppMod
Connector)

Robotics! Student Guide Version 1.2 « Page 15

Experiment #1: Boe-Bot Construction

Figure 1.11: Boe-Bot Completely Assembled

The basic Boe-Bot is assembled and servos are
connected to the Board of Education (doesn't show
10K resistors and servo connections to 1/0 pins).

Figure 1.12: Boe-Bot Front Drawing

The front of your Boe-Bot has a few holes and slots
where you will be able to mount sensors or other
mechanical devices.

Page 16 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

/ \
O i O
o 0
Figure 1.13: Boe-Bot Top Drawing
Note that the servos are placed with the wheels
closest to the center of the robot. This makes turns
very tight and reduces friction on the rear wheel. ! £
[B
— -
v v
RS ol
€ > C) C)
. -

y /_\\ Figure 1.14: Boe-Bot Side Drawing

The breadboard on the Board of Education is
mounted towards the front of the Boe-Bot.
We'll be building our projects on this
breadboard.

——

/
\\/

Robotics! Student Guide Version 1.2 » Page 17

Experiment #1: Boe-Bot Construction

Step #5: Programming the Boe-Bot for Basic Movement Pattern

If construction went okay, the Boe-Bot is now ready to be programmed for a basic movement pattern. Load
the Program Listing 1.2 code in your BASIC Stamp.

"Program Listing 1.2 vl1.2
X var wor d

right_servo con 3
| eft _servo con 15

backwar ds:

for x=1 to 100
pul sout |eft_servo, 850
pul sout right_servo, 650
pause 20

next

pause 250

forward:

for x=1 to 100
pul sout |eft_servo, 650
pul sout right_servo, 850
pause 20

next

If everything worked properly the Boe-Bot should have moved forward and backward, finishing in the same
location where it started. If it quivered and didn't move, then you'll need to verify that it's working from a full
6.0 volts and that the servos were properly modified. If there's no response then check the schematic to see
that the correct BASIC Stamp I/ pins (3 and 15) are connected to the servos, and that the Vin and Vss wires
are correct.

If the Boe-Bot moves backward first and then forward the servo wires have probably been swapped right for
left.

In looking over the program, note the pul sout values of 650 and 850. Since we set the servo to stop moving
with a command of 750, any shorter pulse than this will cause the servo to rotate clockwise, and longer
values will rotate counter-clockwise. Because one servo is reversed when they are used as a drive train, one is
pulsed the opposite direction to make the robot move forward or backwards. The value of the for. . next

loop is proportional to the distance the Boe-Bot travels the specified direction.

Page 18 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Robotics! Student Guide Version 1.2 » Page 19

Experiment #1: Boe-Bot Construction

Challenge!

Program the Boe-Bot to move in several different patterns. Try the following:

(a)

(b)

(c)

To move straight forward or backward we used different pulse lengths for each servo. What happens if
both servos are sent the same pulse length?

Identify pul sout values that make the Boe-Bot move forward very slowly, then backwards very slowly in
a straight line.

Make a graph of wheel speed as a function of pulse length for each servo.
Hints:

* Use several pulse lengths between 1 and 2 ms (pulsout values between 500 and 1000).

* Either count how many revolutions the wheel completes in a specified time (20 sec or a minute), or
see how much time it takes to complete 10 revolutions

Your graph might look something like this:

50.0

——Servo #1
—#-Servo #2

faWal
A" n

400 500 600 _71%00 |\ 800 900 1000 1100 1200

Rotational Speed (RPM)

-20.0

-30.0 4

-40.0

-50.0 - - -

Pulsout value

Page 20 * Robotics! Student Guide Version 1.2

Experiment #1: Boe-Bot Construction

Robotics! Student Guide Version 1.2 » Page 21

Experiment #2: Basic Movements Using Subroutines and Memory

. Movement is one of the most distinctive features
Experiment #2: of robots. Moving around is necessary to find a

Basic Movement Using way through a maze, to follow light, to locate a fire,

Subroutines and Memory to open and detonate a bomb, or to retrieve a
parcel of hazardous waste. It can also be used to

express emotion and intention. Robot movement
isn't limited to forward, backward, left and right, either. Depending on the style of a robot it could move up or
down, and even sideways underwater.

Autonomous mobile robots decide to move based on the data they receive from their input devices - in the
case of the Boe-Bot this includes infrared sensors, photoresistors and any other sensors that you decide to
add.

This experiment is all about BASIC programming as it pertains to simple movement without sensor input.
Structuring your program so the Boe-Bot moves as you intend requires an understanding of how to jump
between subroutine labels, read movement patterns from an EEPROM, determine how far to travel, and how
to get back to your starting point (physically, and within your source code). Experimenting and making all of
these decisions will be made without the help of an input sensor.

In many experiments we used the debug statement to view the value of variables calculated by the BASIC
Stamp. The debug statement sends the data to your PC screen, primarily to determine if we're getting the
results we expected. With the Boe-Bot using debug becomes a bit more complex since your robot is usually
ready to roll once a program is downloaded. There are two tricks we'll use to overcome this problem and
verify that our code is working properly:

1. Stand the Boe-Bot on it's Front Chassis so that it doesn't move The front of the Boe-Bot is flat,
allowing you to stand it on it's up vertically to prevent the wheels from touching the surface of your
desk. The serial cable can remain connected to the Board of Education's DB-9 connector so that
you can use the debug command.

2. LEDs and Piezospeaker LEDs can provide visual feedback to help evaluate the functionality of your
source code. A Piezospeaker will be used to generate unique sounds that correspond to particular
movements.

The LEDs and piezospeaker will add some interesting output devices to your Boe-Bot. Use these feedback
mechanisms to give information about what your robot is doing. Keep in mind that a robot doesn't need to
mimic human behavior. Deep space probes, automobile assembly line robots that paint and weld, and
automated office mail delivery systems are good examples of real world robot applications. They accept
commands and react to their surroundings, but neither look nor act anything like people.

Page 22 « Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

Pulsout Command and Servo Control

Let's have a quick refresher course on servo control. Servos are closed loop devices, and they are constantly
comparing their commanded position (from the BASIC Stamp's pul sout command) to their actual position
(proportional to the resistance of a potentiometer mechanically linked to the shaft). If there is more than a
small difference between the two, the servo's electronics will turn the motor to eliminate the error.

The servos we are using with the Boe-Bot were modified to rotate continuously. The potentiometer shaft was
rotated until the gears stopped moving when sent 1500 us pulse with this program:

"Robotics ProgramListing 2.1 v1.2
| eft _servo con 15
right_servo con 3

start: "begin of routine
pul sout |eft_servo, 750 "pul se width of 1500 us
pul sout right_servo, 750 "pul se width of 1500 us
pause 20 " pause for 20 ns

goto start "do it again

The pulsout value of 750 is equal to 1500 ps since the command operates in units of two microseconds. If you
send a value larger than 750 the servo will turn clockwise, and a value less than 750 will cause it to turn
counter-clockwise. A value very close to 750, like 760, will cause the servo to turn very slowly (this is a way to
add variable speed control to your Boe-Bot), but a value similar to 650 or 850 will command it to turn full
speed. Experiment with different values while the Boe-Bot is standing on it's front. Try to send values that
make the servos turn very slowly, not at all, or very quickly. Program Listing 2.2 demonstrates how a f or

next loop could be used to vary speed.

"Robotics ProgramListing 2.2 v1.2

| eft _servo con 15

ri ght_servo con 3

X var word

pause 2000

for x = 850 to 650 "begin of routine
pul sout |eft_servo, x "pul se width of 1500 us
pul sout right_servo, 1500- x "pul se width of 1500 us
pause 20 " pause for 20 ns

next

Robotics! Student Guide Version 1.2 » Page 23

Experiment #2: Basic Movements Using Subroutines and Memory

Pictorially, the pul sout 750 command looks like Figure 2.1 The command sends pulses of 1500 ps, with
pauses of 20 ms in between. The pulse is a positive 5 V signal.

5 volts
Figure 2.1: Pulsout 20 (ms) 1500 (us) 20 (ms) 1500 (us) 20 (ms)
Command milliseconds | microseconds milliseconds microseconds milliseconds

Ovolts —— B

Parts
Required
You'll need the following parts for these experiments:
(1) fully constructed Boe-Bot with servos
(1) 3300 uF capacitor
(1) piezo speaker

2 10k Ohm resistors
2 470 Ohm resistors
(2) LEDs

(misc.) jumper wires

Page 24 « Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

Build It!

e il aemird e L e

Figure 2.2: Operational
Schematic

This is a complete operational
schematic using servos, peizo
speaker and LEDs for feedback
while the Boe-Bot rolls around.

Note that the servos are
connected to the Vin power
supply. This is an unregulated 6.0 V
power supply from the battery
pack.

There's also a 3300 uF capacitor
between power (Vdd) and ground
(Vss) on the top of the
breadboard.

Build the project shown below in Figure 2.2. Place the 3300 uF
capacitor between the Vdd and Vss connections on the top of the
breadboard. Note that the servos are connected to the Vin (from the
Boe's AppMod header) instead of Vdd adjacent to the breadboard.

Wi
i
= 3300 uF
Win
Was -]
e
.]
10K
P15 - i
P14 *
e 470 ohm
spaaker long
P12 - | | lead
X |
= 470 ghm b
o
Wi - |r:.3 ¥
%
o
P3 . ' £ A
L 4]
18K s
Wias
PO

Robotics! Student Guide Version 1.2 « Page 25

Experiment #2: Basic Movements Using Subroutines and Memory

This experiment will be developed in individual stages. The project is
Program It cumulative, starting with sound and light, and proceeding to use all
pieces by the end.

Sound Feedback

The BASIC Stamp has a unique command for generating sound, appropriately named f r eqout . The f r eqout
command will be used to drive the piezo speaker, and let us know which commands are being executed in our
program. Like all PBASIC commands, it has a particular syntax that must be followed to make it work.

To hear the speaker download the following code to your BASIC Stamp:

freqout 12,750, 2000 "generate 750 ns 2000 Hz tone on P12

The fregout command generates one or two sine waves using fast pulse-width modulation (PWM). The
syntax for f r eqout is shown below:

freqout 12, 750,2000 'generate 750 ns 2000 Hz tone on P12
n========== BASIC Stamp /0 pin 12
A======duration is 750 ms
~===frequency is 2000 Hz

The command also lets you add a second frequency that can be mixed with the first. This will let you create a
sound that's far more "robotic" than a simple beep. For example try this:

"Robotics ProgramListing 2.2a v1.2
Hz var wor d

for HZz = 1 to 4000 step 1000
freqout 12,70, Hz, 4000-Hz ' generate two 70 nms tones on P12
next

This routine begins by declaring Hz as a word variable, a number between 0 and 65,536. The loop executes a
total of four times ((4000-1)/1000), generating two frequencies at once on P12. The first frequency is
increasing from 1 to 4000 Hz while the second frequency is decreasing from 4000 to 1 Hz. The mixing of the
two frequencies also creates a lower frequency tone making the combination sound very "electronic”. Sounds
like this could be added throughout your program.

Page 26 * Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

LED Feedback

The circuit you built on the Boe-Bot has two LEDs. These LEDs are turned on and off using the BASIC Stamps
hi gh and | ow commands. This command causes the BASIC Stamp to actively output a 5 V on one of it's pins.
This is a single, fast instruction. The command makes the corresponding bit high. For example, run this
program on your BASIC Stamp:

" Robotics ProgramListing 2.3 vl1.2

| ed: "led flashing routine
hi gh 14 "5V to P14

high 0 "5V to PO

pause 1000 " pause 1 second

| ow 14 "0V to P14

low O "Ov to PO

pause 1000 ' pause 1 second

goto |l ed "do it again

We'll actively use the LEDs when we program the Boe-Bot for turning movements.

Distance Calibration

When programming the Boe-Bot, you'll find that we're interested in making it move a specific distance or
executing a particular turn (to the right or left). It is helpful to know how to figure out how far the robot will
travel or turn when given a specific command. It's easy to get a rough idea. We know that circumference is
equal to pi () multiplied by the wheel diameter:

circumference = 1 X wheel diameter
circumference = 3.14159 x 6.67 cm [021 cm

Figure 2.3: Wheel Diameter and Circumference

Robotics! Student Guide Version 1.2 » Page 27

Experiment #2: Basic Movements Using Subroutines and Memory

With one complete turn of the wheels the Boe-Bot would travel about 21 cm. If we send pulses to the servo
for the correct amount of time the Boe-bot can be made to travel a specific distance. For example with a
pulsout command of 850, the servo will turn at about 50 revolutions per minute (RPM) or 0.83 revolutions/sec.
So the speed of the robot will be about:

21 cm/revolution x .83 revolutions/sec = 17.5 cm/s
If we want it to go 100 cm, it would have to travel for:

100 cm [17.5 cm/s = about 5.7 seconds
By adjusting the number of times a FOR..NEXT loop is run we can set the distance the robot will travel. We
want 5.7 seconds in this example, so since each servo pulse takes about 1.5 ms and there is a 20 pause, each
lop will take about 23 ms (1.5+1.5+20), or .023 seconds per loop.

5.7 sec/ .023 sec/loop = 247 loops

Measure how far your Boe-bot goes with our estimate:

"Robotics ProgramListing 2.4 v1.2

X var wor d
right_servo con 3
| eft _servo con 15

for x=1 to 247
pul sout right_servo, 850
pul sout |eft_servo, 650
pause 20

next

How far did it go? Several factors can affect how far the robot moves, including differences between servos
and battery voltage, but hopefully our estimate has given a good starting place to adjust the loop limit.

Modify the for. . . next loop value in the f or war d routine so your Boe-Bot travels 100 cm. This will give you an
idea of the number of loops you need to execute to travel a particular distance. Suppose that you only
wanted the Boe-bot to travel 10 cm - then the proper loop value would be about one tenth of the 100cm
value. Remember this number because we'll be using it in the future.

Page 28 Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

Making Turns

Two parameters are modified to make the ideal turn at whatever angle you select. The first is that the
pul sout values are the same for both sets of servos (they are either both 650 or they are both 850). The
second modification is the number of loops. For example, enter the following program to make the robot
move forward and then turn around:

"Robotics ProgramlListing 2.5 v1.2
right_servo con 3

| eft _servo con 15
X var wor d
"forward
for x=1 to 24
pul sout |eft_servo, 850
pul sout right_servo, 650
pause 20
next
"turn_180:
for x=1 to 30 "€nmodify this value for turn angle
pul sout left_servo,850 ' <€note the value of 850
pul sout right_servo, 850 ' <€note the value of 850
pause 20
next
end

Substitute the t urn_180: routine's pul sout 850 for a value of 650, download the code and the Boe-Bot
will turn the other way. The number of loops determines the angle of the turn. To make a 90 degree turn left
or right simply decrease the number of loops.

Goto Statement
Normally, the program will execute one instruction and proceed to the next instruction. The GOTO command

causes the BASIC Stamp to jump to a named place somewhere else in the program. It can be either forward
or backward in the program.

goto forward "goto the place on the program nanmed with the
‘label forward:
A===z======= This label “forward” gives a name to a particular point

in the program

Robotics! Student Guide Version 1.2 » Page 29

Experiment #2: Basic Movements Using Subroutines and Memory

To test it out, add the following statement to the end of Program Listing 2.6

goto forward
The purpose of the statement is probably foo clear by now since the Boe-Bot won't stop moving forward,

around, and back! To make the Boe-Bot stop, tilt it forward so it doesn't roll away and reprogram without the
got o statement at the end of the code.

Gosub: A Close Relative of Goto

The gosub statement also causes the program execution to jump somewhere else, but there is a very
important difference. The line after the gosub is remembered so that the program can automatically go back
and continue where it left off. This lets us easily reuse sections of the program called subroutines. A
subroutine always starts with a label and ends with a return statement:

Gosub bl i nkbeep bl i nkbeep: ‘subroutine label
Pause 1000 igh0
Gosub blinkbeep freqout 12,100,2000

END \ Low O

Nested:

The term “nested" refers to the | - q,hs may also be nested, so that each return takes the program back
placement of subroutines or

commands within a loop or | totheinstruction after the most recent gosub .
branch command. For example:

This little example shows the blinkbeep instructions being executed twice.

X var byte

y var byte

for x =1to5
debug ? x
for y =1to 5

debug ? vy

next

next

The statements within the y for...
next loop are nested within the x
loop. The y loop counts from 1 to
5 for every single increment in x.

Page 30 * Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

To learn how to use the gosub statement download Program Listing 2.7 to your BASIC Stamp (the code is
shown in two columns to conserve space). Trace out the jumps and returns of the program execution.

" Robotics Program Listing 2.6Vv1.2

X var wor d
right_servo con 3
| eft _servo con 15

gosub forward
gosub | eft

gosub forward
gosub | eft

gosub forward
gosub | eft

gosub forward
gosub turn_around
gosub backward
end

‘Subroutines

forward:

for x=1to 60

pulsout left_servo,850
pulsout right_servo,650
pause 20

next

return

backward:
for x=1 to 60
pulsout left_servo,650

pulsout right_servo,850
pause 20

next

return

right:

for x=11to0 18

pulsout left_servo,850
pulsout right_servo,850
pause 20

next

return

left:

for x=1to 18

pulsout left_servo,650
pulsout right_servo,650
pause 20

next

return

turn_around:

for x=1to 30

pulsout left_servo,850
pulsout right_servo,850
pause 20

next

return

This program moves the Boe-Bot in a square. You will probably have to adjust the number of loops executed
in each subroutine to make 90 degree turns. Try all of the subroutines. Could turn_around be written in a

different way?

By making a long list of gosubs we could build up a complex movement pattern, but it is very tedious to make
changes. The next section will use letters stored in the BASIC Stamp EEPROM memory to represent the

movements we wish to make.

Robotics! Student Guide Version 1.2 » Page 31

Experiment #2: Basic Movements Using Subroutines and Memory

Using the Data Command and EEPROM to Store Movements

The BASIC Stamp has a 2K EEPROM that is used for program storage (which builds downward from address
2047) and data storage (stores in the opposite direction - from address 0 to 2047). If the data collides with
your program the PBASIC program won't execute properly. Figure 2.4 graphically shows how the EEPROM is
filled with your program and data.

EEPROM is different from RAM variable storage in several aspects:

e EEPROM takes more time to store a value, sometimes up to several milliseconds.

e EEPROM can accept a finite number of write cycles, around 10 million writes to be exact (RAM has
unlimited read/write capabilities).

* Primary function of the EEPROM is to store programs; data is stored in leftover space.

Three commands are used to access the EEPROM: dat a, r ead, and wr i t e. We'll be using the dat a and r ead
statements.

Physically, the EEPROM is the small black chip on the BASIC Stamp Il module labeled "24LC16B".

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
[V Data stored in EEPROM builds from this location towards position 16, 128
(address 2048).

Figure 2.4: EEPROM

Memory Map

By accessing the run [memory map icon
on the BASIC Stamp editor you will be
able to see how much space is used by
your PBASIC program. Data stored in
EEEPROM is not visible on the memory
map.

Program builds from this location towards position 0,0 (address 0).

To demonstrate the EEPROM, we'll combine everything we learned from Experiment #2 into one big program!

Page 32 « Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

All Together Now

Program Listing 2.7 brings all of these concepts together: light, sound, movement, and speed. In order to
make effective use of the speed, you will need to identify the exact center position of your servo. Chances are
although we started with 750 (1500 us) the servo may have wandered to a slightly different value. Program
Listing 2.1 may be run to identify these values. At higher speeds (speed constant around 40) this is not as
visible, but at slower speeds the Boe-Bot will slowly move sideways if the center position is not exactly 750.
Most importantly: experiment! Change values, movement patterns, and sounds. This program is also available
from the downloads section in http://www.stampsinclass.com. Code is not included for the LEDs, but you can
add those if you desire.

"Robotics ProgramListing 2.7 v1.2
' Boe- Bot Program for Roami ng and Sound
"Define Variables and Constants

X var wor d "l oop counter for pul sout
position var wor d ' EEPROM addr ess count er
direction var wor d "val ue stored in EEPROM
Hz var wor d "frequency variabl e

ri ght_servo con 3 "right servo on P3

| eft _servo con 15 "left servo on P15
speaker con 12 ' speaker on P12

right_|ed con 0 ‘right LED on PO

left_led con 14 ‘left LED on P14

speed con 50 ‘added or subtracted value

'Programmed Movement Patterns

data "FRFRFRBBTFE" 'store movements

'Main Program

position=0 'start at EEPROM cell O
move: ‘main loop
read position,direction 'read direction command
position=position+1 ‘increment to next cell

if direction="E" then quit ‘Decide which action to take

if direction="F" then forward 'by matching command letter

if direction="B" then backward

Robotics! Student Guide Version 1.2 » Page 33

Experiment #2: Basic Movements Using Subroutines and Memory

if direction="T" then turn_around
goto nove "repeat until E is seen

f or war d_sound:

for HZz = 1 to 4000 step 1000
freqout speaker, 70, Hz, 4000- Hz
next

return

back_sound

for Hz = 4000 to 6000 step 1000
freqout speaker, 70, Hz, Hz- 400
next

return

ri ght _sound:
freqout speaker, 200, 2500
return

| eft _sound:
freqout speaker, 200, 4500
return

forward:

gosub forward_sound

for x=1 to 60

pul sout |eft_servo, 750+speed
pul sout right_servo, 750- speed
pause 20

next

goto nove

backwar d

gosub back_sound

for x=1 to 60

pul sout |eft_servo, 750- speed
pul sout right_servo, 750+speed

pause 20
next
goto nove

Page 34 * Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

right:

hi gh right_led

gosub right_sound

for x=1 to 18

pul sout |eft_servo, 750+speed
pul sout right_servo, 750+speed
pause 20

next

low right _|ed

goto nove

left:

high left_|ed

gosub | eft_sound

for x=1 to 18

pul sout |eft_servo, 750- speed
pul sout right_servo, 750- speed
pause 20

next

low left_led

goto nove

turn_around:

for x=1 to 40

pul sout |eft_servo, 850
pul sout right_servo, 850

pause 20
next

goto nove
qui t:

end

Robotics! Student Guide Version 1.2 « Page 35

Experiment #2: Basic Movements Using Subroutines and Memory

Challenge!

1. The Boe-Bot is being used to transport reactive material, in particular solid sodium and water. If the two
react they explode, leaving your Boe-Bot as a pile of components. In order to carefully transport the
chemicals you will need to start movements with increasing velocity. Create a program that drives the
Boe-Bot in a 1 meter square with smooth turning transitions.

2. Create a simple movement pattern with several directions, for example FB,RRFFL, and lastly F. These
patterns would be stored and read from the EEPROM. When you are done executing the pattern, trace
the same pattern in a backwards fashion.

3. Create source code for the following movement patterns:

40 cm/side 20 cm radius

sine wave pattern

Page 36 * Robotics! Student Guide Version 1.2

Experiment #2: Basic Movement Using Subroutines and Memory

Robotics! Student Guide Version 1.2 « Page 37

Experiment #3: Following Light

. Light has many applications in robotics and industrial control.
Experiment #3: Some examples include sensing the edge of a roll of fabric in
Following Light the textile industry, determining when to activate streetlights

at different times of the year, when to take a picture, or when
et to deliver water to a crop of plants.

To sense the presence and intensity of light we'll build a couple of photoresistor circuits on our Boe-Bot. A
photoresistor is a light-dependent resistor (LDR) that covers the spectral sensitivity similar to that of the
human eye. The active elements of these photoresistors are made of Cadmium Sulfide (CdS). Light enters into
the semiconductor layer applied to a ceramic substrate and produces free charge carriers. A defined
electrical resistance is produced that is inversely proportionate to the illumination intensity. In other words,
darkness produces high resistance, and high illumination produces very small amounts of resistance.

The specific photoresistors included in the Boe-Bot kit are EG&G Vactec (#VT935G). If you need additional
photoresistors they are available from Parallax and electronic component suppliers (parts listing is included in
Appendix A). The specifications of these photoresistors are shown in Figure 3.1:

Photoresistor Specifications
Resisiance (D) Pk Hesponse Time
Figure 3.1: EG&G Vactec 0 Lux 2B508 Diark Specira Vs & 1fc
Photoresistor Specifications Response {ms, typ.)
Min TILL'IM Min St nm Rige {1-18%) | Fall{1ie)
0K | 290K | 30K 1M 10 anl 10d] EH] 5

llluminance is a scientific name for the measurement of incident light. The unit of measurement of illuminance
is commonly the "foot-candle” in the English system and the "lux" in the metric system. While using the
photoresistors we won't be concerned about lux levels, just whether or not illuminance is higher or lower in
certain directions. Based on this data the Boe-Bot will turn towards the light. For more information about
light measurement with a microcontroller, take a look at Earth Measurements Experiment #4, Light on Earth
and Data Logging.

The topics we'll explore in this experiment also relate to program structure. Some of the variables that will

need to be customized for your Boe-Bot are how far to travel before checking the photoresistors and how
much to turn when a photoresistor detects light.

Page 38 ¢ Robotics! Student Guide Version 1.2

Experiment #3: Following Light

Parts a
Required

You'll need the following parts for these experiments:

(1) fully constructed Boe-Bot with servos
(1) 3300 uF capacitor

(1) piezo speaker

2 0.01 uF capacitor

2 10K Ohm resistors

2 220 Ohm resistors

2) 470 Ohm resistors

2 red LEDs

2 photoresistors

(misc.) jumper wires

While building this circuit it would be practical to move all of the servo
Build It! connections and speakers towards the part of the breadboard closest
' to the BASIC Stamp. The schematic for this project is shown in Figure

3.2.

Robotics! Student Guide Version 1.2 « Page 39

Experiment #3: Following Light

Figure 3.2: Light
Sensing Boe-Bot
Schematic

The capacitor sizes
for the
photoresistors are
not critical. These
may also be 0.1 or 1.0
uF.

P15 »

P14«

iz

P11,

=¥

Wi
3300 uF
Win T
W
gy
10K
Was
Wes
|i|'|.
ko
e
Wss

Page 40 * Robotics! Student Guide Version 1.2

220 ahim

2
=
G
pEzo
SRe AT
= 4T ahen
A
4
WEE

470 ohm
& Widd J 4
& .01 A
[Pl
Wss

'-:h pholorersshor

A& Wdd

iyl
uF

WEE 220 ahrm photoresislor

Wed

Experiment #3: Following Light

The Boe-Bot must be programmed to follow light, making turns towards
more light. Consider how we want the Boe-Bot to execute the series of

Program It commands. One approach is to build a flowchart of the steps the Boe-
Bot should execute to find the light and move in that direction. An
example is shown in Figure 3.3.
Fig 3.3: Basic O 6 I Right photoresistor
igure 5.5: basic Operationa senses more light .
Flow Chart A than left Turnright. ——
The main decision that needs to be Vove _~“Check < photoresistar.
made is in response to the question forward | ”%h" %
"where's the light?". Other decisions \VEUSS S| Left photoresistor
relating to "how often" to check the A g . Jsenses more light Turn left »
. .. " than right '
photoresistors and "how far" to travel)
. photoresistor.
are also important.

There are some decisions not shown in this flowchart. For example, how far to travel before checking the
photoresistors, and how much to turn in order to track the light without missing it entirely. And how do we
know if the two photoresistors are measuring light properly? We'll verify the light values by generating sound
with a piezospeaker.

Using the Photoresistor

The photoresistors have a non-linear response to light. To measure their output we'll use a resistor/capacitor
circuit. The RCTi me command measures the charge (or discharge) time of a resistor/capacitor circuit. When
RCTi me executes, it starts a counter that increments ever 2 ps. It stops this counter as soon as the pin is no
longer in the starting state. The starting state of our pin will be 1 (5 volts). When the circuit discharges to 1.4V
(and the pin is considered "low") the command will stop and store the time value in a variable. The command
works as shown below, and an example is shown in Program Listing 3.1:

Robotics! Student Guide Version 1.2 » Page 41

Experiment #3: Following Light

I/O pin with photoresistor
starting state (0 or 1)
n======= variable location to store the charge time

"Program Listing 3.1 vl1.2

scal e con 100 "adj ust value to nake audi bl e frequency
ri ght LDR var wor d

| ef t LDR var wor d

left _LDRpin con 11

right _LDRpin con 4

speaker con 12

left_light:

high left_LDRpin

pause 100

rctime left _LDRpin,1,leftLDR

debug cls, hone, ? | eft LDR

freqout speaker, 100, | ef t LDR*scal e+100
pause 10

right_light:

hi gh right _LDRpi n ‘discharge the capacitor
pause 100

rctime right_LDRpin,1,rightLDR ‘measure the time to charge

debug ? rightLDR ‘display the charge time

freqout speaker,100,rightLDR*scale+100 ‘play a tone, more light = lower
pitch

pause 200

goto left_light

With more light present on the photoresistors the charge time of the resistor / capacitor circuit is shorter,
and the lower frequency of the tone. In order to generate an audible range of tones adjust the scale
constant while exposing the photoresistors to varying light levels.

You may have noticed that when you point the Boe-Bot's photoresistors towards an even light (or dark) area
of the room the righttDR and lefttDR values are not equal. This is a result of variations between
capacitors and tolerance of resistors. You can "calibrate” the photoresistor returning the lower RCTime value
by adding the difference between the two photoresistors. For example, if the righttDR returns RCTime
values that are lower than the leftLDR by a value of 5, you could make the following modification to your
code:

Page 42 « Robotics! Student Guide Version 1.2

Experiment #3: Following Light

right Iight:
hi gh right _LDRpin
pause 100

rctime right LDRpin, 1, rightLDR

right LDR=ri ghtLDR + 5

debug hone, dec ? rightLDR

freqgout speaker, 100, ri ght LDR*scal e+100
pause 10

This calibration will only be effective over a narrow range of RCTi me values since the photoresistors are non-

linear.

Robotics! Student Guide Version 1.2 » Page 43

Experiment #3: Following Light

Source Code Example

Program Listing 3.2 is an example application of light following. Readings are taken on each photoresistor
and the Boe-bot turns toward the brighter reading.

" Boe-Bot Program for Light Follow ng with Sound Feedback
"Program Listing 3.2 v1.2

"Define Variabl es and Constants

| eft _servo con 15
ri ght _servo con 3
turnval ue con 6
scal e con 100
speed con 100
speaker con 12
ri ght _LED con 0
left _LED con 14
ri ght LDR var wor d
| eft LDR var wor d
ri ght _LDRpin con 4

| eft _LDRpin con 11

X var wor d

forward:

for x=1 to 10

pul sout |eft_servo, 750+speed
pul sout right_servo, 750- speed
pause 20

next

left_light:

hi gh left_LDRpin

pause 10

rctime left _LDRpin,1,|eftLDR

debug "L:",dec leftLDR

freqout speaker, 100, | ef t LDR*scal e+100

right_light:
hi gh right_LDRpin
pause 10

Page 44 « Robotics! Student Guide Version 1.2

Experiment #3: Following Light

rctime right_LDRpin,1,rightLDR
debug * R ",dec rightLDR cr
freqout speaker, 100, ri ght LDR*scal e+100

if leftLDR > rightLDR then right ‘brighter on the right
if IeftLDR < rightLDR then left ‘brighter on the left

right:

high right_LED

for x=1 to turnvalue
pulsout left_servo,750+speed
pulsout right_servo,750+speed
pause 20

next

low right_LED

goto forward

left:

high left_LED

for x=1 to turnvalue
pulsout left_servo,750-speed
pulsout right_servo,750-speed
pause 20

next

low left_ LED

goto forward

What would happen if the light readings were the same on both sides?

Experiment with the source code by changing different software and hardware parameters. You'll find that
the Boe-Bot is not aware of objects since it has no feedback for sensing objects, and can easily run into walls
and chairs. It may also be necessary to shield the edges of the photoresistors with a straw or heat-shrink

tubing to reduce light reflection from the side.

In Experiment #4 we'll introduce infrared communication for proximity sensing.

Robotics! Student Guide Version 1.2 « Page 45

Experiment #3: Following Light

Challenge!

1. Program the Boe-Bot to hide from light. The Boe-Bot should move towards the darkest corner of the
room, and when a specific level of luminance is reached it should stop in place and generate a siren
signal.

2. Restructure Program Listing 3.2 to use the gosub statement to execute a series of tasks.
3. Can the Boe-Bot follow a light source with just one photoresistor? Instead of comparing readings from

two sensors, write a program that takes two readings (in slightly different directions) with one sensor
and then goes toward the brighter reading.

Page 46 * Robotics! Student Guide Version 1.2

Experiment #4: Infrared Object Detection

Today's hottest products seem to have one thing in common:
wireless communication. Personal organizers beam data into
desktop computers, and wireless remotes let us channel surf.
With a few inexpensive and widely available parts, the BASIC
Stamp can use an infrared LED and receiver to detect objects
that exist to the front and side of your traveling Boe-Bot.

Experiment #4:
Infrared Object
Detection

The major limitation to IR technology is the need for a clear line of sight between the transmitter and
receiver. If an object were to interrupt the beam of light, the connection would be disrupted. The Boe-Bot will
be bouncing IR off of objects and receiving them. The success of the application depends on the height of the
object you are detecting, the location within the IR LED's visible range, and the reflectivity of the surface.

Obstacle Alley

If you drive an automobile, you know the practical application of the Pauli exclusion principle: Two objects
can't occupy the same space at the same time. What's true for automobiles is even truer for robots. An
autonomous robot has to keep itself from colliding with obstacles. Obstacles might take the form of a wall or

Infrared

Infra means below, so Infra-red is
light (or electromagnetic radiation)
that has lower frequency, or
longer wavelength than red light.
Our IR LED and sensor work at 980
nm (nanometers) which s
considered near infra-red. Night
Vision goggles and IR Temperature
sensing use far infra-red
wavelengths of 2000- 10,000 nm
depending on the application.

Approximate

Color Wavelength
Violet 400 nm
Blue 470

Green 565

Yellow 590
Orange 630

Red 780 nm

Near infra-red 800-1000 nm

post, or they may be mobile like a dog, a person, or another robot.

Since the robot can't know the positions of moving objects in advance, it
must have some way of detecting obstacles in real time. Humans, of
course, use vision. While a robot that can see would be very desirable, it is
also quite expensive and difficult to make a vision system appropriate for
robotics.

Luckily, detecting obstacles doesn't require anything as sophisticated as
machine vision. A much simpler system will suffice. Some robots use
RADAR or SONAR (sometimes called SODAR when used in air instead of
water). An even simpler system is to use infrared light to illuminate the
robot's path and determine when the light reflects off an object. Thanks to
the proliferation of infrared (IR) remote controls, IR illuminators and
detectors are easily available and inexpensive.

Infrared Transmission

As the name implies, IR remote controls transmit instructions over a beam
of light. To avoid interference from sunlight and other household sources
of infrared, primarily incandescent lights, the detector that we're using
has two important features that help reject unwanted signals.

Robotics! Student Guide Version 1.2 » Page 47

Experiment #4: Infrared Object Detection

First, it has an optical filter which allows very little light except the 980 nm infra-red that we want to detect
onto it's internal photodiode sensor. Then, there is an electronic filter that will only allow signals around 38
kHz to pass through. Since there are very few sources of 38 kHz infra-red naturally occurring we're not likely
to get interference. The brightness of incandescent and fluorescent lights does vary at 120 Hz, twice the
power mains frequency of 60 Hz (or 100 Hz if your mains frequency is 50 Hz), but this is so much lower than
38kHz that the detector ignores it completely.

A 555 timer circuit is used to produce an output square wave that runs at about 38kHz. This circuit should be
familiar from "What's a Microcontroller?” experiment 5. The output pin is connected to an IR LED, and the
reset pin is used to turn the 555 on and off. The duty cycle, or percentage of LED on-time, is not critical to
reliable operation of the IR detector module, but if the duty cycle gets too far above or below 50%, the
detection range will be reduced.

We will need to tune the 555 circuit with a potentiometer to account for normal component variations to
produce the desired 38 kHz frequency. The BASIC Stamp count function will be used to measure the

frequency during the tuning process.

Infrared Reception

The IR LED and receiver may be used to send and receive serial data, but initially all we'll be doing is detecting
the presence of an IR signal being reflected from an object. We'll be receiving the IR signal when the BASIC
Stamp 1/0 pins connected to the receiver are "low".

Many types of IR LED transmitters could be used for this experiment. The transmitter we're using requires a
frequency carrier of 38 kHz. This distance is shortened dramatically when we're trying to detect the presence
of an object, and expecting the wave to be bounced back from the object's surface. Variables such as texture,
surface color, and reflectivity affect reliability.

Building the IR circuit requires two steps: oscillator tuning and

Build It! implementing a receiver. Placement of the components will be critical
due to the large number of parts that will be present on the
breadboard. Share Vss and Vdd connections where possible, and leave
space on the front of the breadboard for the transmitter and receiver.
Refer to Figure 4.3 for parts placement.

Page 48 * Robotics! Student Guide Version 1.2

Experiment #4: Infrared Object Detection

Oscillator Tuning

The first step requires tuning the oscillator circuit to 38 kHz. The projects are cumulative. You'll need the

following components for this circuit:

(1)

(1) 555 timer

(1) 1K potentiometer
(1) 0.01 uF capacitor

2 1K resistor
(misc.) jumper wires

operational Boe-Bot with 3300 uF capacitor between Vss and Vdd

4

Power Supply

Vdd

3300 uF

Vss =

1K
pot

1K <1K

Vin T
Schematic is shown in Figure 4.1. |
= AAA
P15, | 10K
- Ves = Servo Motors
Figure 4.1: Oscillator P3 o
Tuning Schematic Vin
10K
Vss =
Vdd
1 8
T gnd 555 Vdd
Vss = Timer
2| .. . 7
trigger discharge
3 6
PG * output threshold
4
p5 e reset control
0.01 UFJ%

Vss

Robotics! Student Guide Version 1.2 » Page 49

Experiment #4: Infrared Object Detection

Run Program Listing 4.1. In order to tune the circuit we'll adjust the

Program It potentiometer with a small screwdriver.

"Program Listing 4.1 vl1.2
frequency var word
high 5 “turn on oscillator
start:
count 6, 100, frequency
debug dec5 frequency*10, cr
goto start

The 555's oscillation frequency will be shown on the debug screen. Turn the potentiometer with a small
screwdriver until the frequency is equal to approximately 38000. Next we'll add the infrared LEDs and
receivers.

Infrared Transmit and Receive

Complete the project by adding infrared receivers shown in Figures 4.2, 4.3, and 4.4. Infrared receivers and
LEDs need to be placed near the front of the breadboard. You'll need the additional following parts to add the
receivers:

) infrared receivers
2 infrared LEDs

) 470 ohm resistors
2 0.1 uF capacitors
(misc.) jumper wires

Page 50 * Robotics! Student Guide Version 1.2

Experiment #4: Infrared Object Detection

Figure 4.2: Infrared Receiver and LED
Placement on Breadboard

The infrared LEDs will focus forwards at a 45°
angle. The angle between the two LEDs is 90°.
The receivers should be positioned on each
side of the breadboard facing the same
direction. These positions will need to be
tuned for optimal performance.

Figure 4.4 shows a diagraph of how the parts
could be placed on the breadboard to achieve
this result.

Figure 4.3: Infrared Object Detection Parts
Placement Diagram

There are many ways to wire this circuit, and
this is only one option. The key features of this
placement are that servo connection Vss
(grounds) are shared with the IR receivers, and
Vin connections are jumpered between servos.

Robotics! Student Guide Version 1.2 « Page 51

Experiment #4: Infrared Object Detection

Win T
[Powar Supply
T L =
100K
=5 L, | 0 g o
WEE
il Servo Mokors
a3 s Win
1 TS0 uF
i |
10K, i
Wis =
—dd
. infrared
01 wF 11 .
P . | recsiver
. L esking
Tresk o infrared = VTS = =
macaiars has tha
reund b
Figure 4.4: Infrared Receiver and TTT
Transmit Schematic widd
sulpui - ot uEXE— | rikared
= 1. i =~ recefver
llooking
SRR T T]
-
10K
Yidd
. . g
- E. J
| ond 555 Wid —y 4
Viss I Timer ?'m'm
. g o dschangs —s—
3 &
=" ~+ - 1 il threshaid |
1 L &
PE = - - | regel control
0.1 uF 7 T
"1 inframed T‘ irfrared
o LED o LED
i AT = 470
" ghm < ehm
s g

Page 52 * Robotics! Student Guide Version 1.2

Experiment #4: Infrared Object Detection

Enter and download Program Listing 4.2. The infrared receivers are connected to PO and P9. When the I/O
pins are "low" the infrared signal has been received from bouncing off of an object. This source code may be
debugged while the Boe-Bot is connected to your PC. The infrared transmitters and receivers will need to be
tuned through experimentation.

"Program Listing 4.2 v1.2 4
' Boe- Bot Program for Avoi dance Using IR

"Define Vari abl es and Constants

Hz var wor d "frequency variabl e

X var wor d "l oop counter

right IR var i n0 "right IR on PO

left IR var in9 "left IR on P9
right_servo con 3 "right servo on P3

| eft _servo con 15 "left servo on P15

I R_out con 5 "Enable IR transmitter
del ay con 10 ' di stance const ant
speaker con 12 ' speaker on P12

speed con 50 ' speed const ant

hi gh I R out "set IR high
al arm "reset routine
f orwar d_sound: "occurs if BASIC Stanp
for HZz = 1 to 4000 step 1000 "is reset

freqout speaker, 70, Hz, 4000- Hz "sound on P12
next "repeat Hz tinmes
sense: "check IR routine
if (left_IR=0) and (right_IR=0) then back 'if both IR detect then back
if left IR=0 then right "left IR detect then right
if right _IR=0 then left "right IR detect then |eft
forward: "ot herwi se nove forward
debug "forward", cr " debug direction to screen
for x = 1 to delay*2 "di stance

pul sout |eft_servo, 750+speed "pul se left servo

pul sout right_servo, 750-speed "pul se right servo

pause 20 " pause 20 s
next ‘repeat x tinmes
goto sense "junp to sense routine

Robotics! Student Guide Version 1.2 « Page 53

Experiment #4: Infrared Object Detection

back:

debug "backward", cr

for x=1 to del ay*3
pul sout |eft_servo, 750-speed
pul sout right_servo, 750+speed

pause 20
next
goto right
left:

debug "left",cr

for x = 1 to delay*1l
pul sout |eft_servo, 750- speed
pul sout right_servo, 750- speed
pause 20

next

goto sense

right:

debug "right",cr

for x =1 to delay *1
pul sout |eft_servo, 750+speed
pul sout right_servo, 750+speed
pause 20

next

goto sense

Page 54 * Robotics! Student Guide Version 1.2

"nmove backward

"debug direction to screen
"di stance

"pul se left servo

"pul se right servo

" pause 20 ms

"repeat x tines

"turn right when done

"move | eft

"debug direction to screen
"di stance

"pul se left servo

"pul se right servo

" pause 20 ms

"repeat x tines

"junp to sense routine

"nmove right

"debug direction to screen
' di stance

"pul se left servo

"pul se right servo

" pause 20 s

‘repeat x tinmes

"junp to sense routine

Experiment #4: Infrared Object Detection

Troubleshooting

* During movement or object encounter the alarm routine begins. The al ar mroutine should execute
only once when the Boe-Bot is programmed or reset by pressing the "reset” button on the Board of
Education. If you hear the alarm more than once then your BASIC Stamp is resetting. It is resetting
because the servos are drawing the power supply low. To fix this, be sure you have installed the 3300
uF capacitor between Vdd and Vss, and that the servos are connected to the Vin supply. If you
continue to encounter resets, replace the 4AA batteries. This is a result of the Board of Education
being designed before the Boe-Bot, and having only one power supply for logic and motor control.

* Far-away objects are encountered early. The Boe-Bot could find himself barely making his way down
a narrow hallway due to object detection of walls on each side. This can be fixed by doing three
things: 1) focusing the IR LEDs and receiver in the same direction, and by narrowing their angle by
using straws or tape wrapped around the perimeter of each device. IR can be reflected from many
objects around the Boe-Bot, making it difficult to determine what object was actually detected; and
2) detuning the potentiometer by slightly turning it away from 38 kHz; and 3) use bigger resistors (2K
ohm) for the IR LEDs to reduce their output.

* Boe-Bot turns too much after an object is detected. The amount of turning is determined by the
number of for. . next loopsintheleft: andright: routines. By decreasing the number loops
in the x variable the turn will become shorter.

* Boe-Bot travels in a wide arc when it should go straight. Particularly at slow speeds, you may notice
it is difficult for the Boe-Bot to travel straight. To fix this, set the speed con 50 to speed con 0.
Then, if your servos are still centered at a pulse width of 750, the Boe-Bot should sit idle. If it does
not then adjust the values forri ght _servo and| eft_servo so your Boe-Bot will travel straight.

* Boe-Bot travels in circles. The sense: routine checks the IR receivers in the following order: 1) both
left and right are checked together; 2) left is checked alone; and 3) right is checked alone. When an
object is detected on both IR receivers the Boe-Bot backs up and turns right. If objects are detected
by both sensors then it will continue to move in a circle. Try using the BASIC Stamp's random
command to decide which direction the Boe-Bot should go after both IR receivers detect a signal.

Robotics! Student Guide Version 1.2 « Page 55

Experiment #4: Infrared Object Detection

Challenge!

1. Use speaker to signal which of the infrared receivers detected an object.

2. Use the BASIC Stamp's EEPROM to log the detection of objects on the right and left receivers. This
requires using the r ead and wr i t e statements.

3. Add two photoresistors to your Boe-Bot. Follow light and avoid objects.

Page 56 * Robotics! Student Guide Version 1.2

Appendix A: Parts Listing and Sources

All components (next page) used in the Robotics experiments are

T readily available from common electronic suppliers. Customers who

Parts Listing would like to purchase a complete kit may also do so through

Parallax. To use this Robotics curriculum you need three items: 1) a

BASIC Stamp Il module (available alone, or in the Board of Education

- Full Kit); 2) a Board of Education (available alone or in a Board of Education Full Kit); and 3) the Robotics
Parts Kit. The best setup consists of the Board of Education Full Kit and the Robotics Parts Kit.

Board of Education Kits

The BASIC Stamp Il (BS2-IC) is available separately or in the Board of Education Full Kit. If you already have a
BS2-IC module, then purchase the Board of Education Kit. Individual pieces may also be ordered using the
Parallax stock codes shown below.

Board of Education - Full Kit (#28102)

| Parallax Code# | Description | Quantity |

28150 Board of Education

800-00016 jumper wires (bag of 10) 1
BS2-IC BASIC Stamp Il module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Board of Education Kit (#28150)

28102 Board of Education 1
800-00016 jumper wires (bag of 10) 1

This printed documentation is very useful for additional background information:

BASIC Stamp Documentation

Parallax Code# Internet Availability?

27919 BASIC Stamp Manual Version 1.9 http://www.stampsinclass.com

28125 Robotics Text http://www.stampsinclass.com

27951 "Programming and Customizing the | Table of Contents only from
BASIC Stamp Computer” http://www.stampsinclass.com

Robotics! Student Guide Version 1.2 Page 57

Appendix A: Parts Listing and Sources

The Robotics experiments require the Robotics Parts Kit (#28124)

Similar to all Stamps in Class curriculum, you need a Board of Education with BASIC Stamp and the Parts Kit.
The contents of the Robotics Parts Kit is listed below. If you want to build your own metal chassis then
download the drawings from http://www.stampsinclass. These replacement parts are available from Parallax
but may also be sourced from common electronic suppliers.

Robotics Parts Kit (#28124)

700-00002 4-40 x 3/8"machine screws 8
700-00009 1" polyethylene ball, pre-drilled 1
700-00011 o-ring tires 2
700-00013 plastic machined wheels 2
700-00016 4-40 x 3/8" flathead machine screws 2
700-00022 aluminum chassis 1
700-00023 1/16" x 1.5" long cotter pin 1
700-00023 4-40 nylon locknuts 10
700-00025 13/32" rubber grommet (fits 4" hole) 1
700-00026 9/32" rubber grommet (fits 3/8" hole) 2
700-00027 1/2" double-female standoffs 4
700-00028 4-40 x 1/ 4" machine screw 8
700-00029 battery holder 1
700-00030 DC power cord with 2.1 mm jack 1
900-00003 Servos (Futaba s-148 or Parallax) 2
350-00006 red LEDs 2
451-00301 3-pin headers 2
604-00009 555 timer IC (LMC555 or equivalent) 1
350-00009 Photoresistors (EG&G Vactec VI935G group B) 2
150-02210 220 ohm resistors 3
150-04710 470 ohm resistors 2
150-01020 1K ohm resistors 5
150-02020 2K ohm resistors 2
150-01030 10K ohm resistors 5
350-00013 infrared receiver (Panasonic PNA4602M or eq.) 2
350-00014 infrared LEDs covered with heat shrink tubing (QT QEC113) 2
900-00001 Piezospeaker 1
800-00016 jumper wires (bag of 10) 1

Page 58 * Robotics! Student Guide Version 1.2

Appendix A: Parts Listing and Sources

201-03080 3300 uF capacitor \ 1 |
152-01010 1K ohm potentiometer (Bourns 3352-102 or equiv.) \ 1 |
200-01040 0.1 uF capacitors \ 4 |
200-01031 0.01 uF capacitors \ 2 |

Robotics! Student Guide Version 1.2 « Page 59

Appendix A: Parts Listing and Sources

The Parallax distributor network serves approximately 40 countries
world-wide. A portion of these distributors are also Parallax-authorized
"Stamps in Class” distributors - qualified educational suppliers. Stamps in
Class distributors normally stock the BASIC Stamp and Board of
Education (#28102 and #28150). Several electronic component companies
are also listed for customers who wish to assemble their own Robotics Parts Kit.

| Country | Compan Notes

Sources

e] aom o e L e

United States

Parallax, Inc.

3805 Atherton Road, Suite 102
Rocklin, CA 95765 USA

(916) 624-8333, fax (916) 624-8003
http://www.stampsinclass.com
http://www.parallaxinc.com

Parallax and Stamps in Class source.
Manufacturer of the BASIC Stamp.

United States

Digi-Key Corporation

701 Brooks Avenue South

Thief River Falls, MN 66701

(800) 344-4539, fax (218) 681-3380
http://www.digi-key.com

Source for electronic components. Parallax
distributor. May stock Board of Education.
Excellent source for components.

Australia

Microzed Computers

PO Box 634

Armidale 2350

Australia

Phone +612-67-722-777, fax +61-67-728-987
http://www.microzed.com.au

Parallax distributor. Stamps in Class distributor.
Excellent technical support.

Australia

RTN

35 Woolart Street

Strathmore 3041

Australia

phone / fax +613 9338-3306
http://people.enternet.com.au/~nollet

Parallax and Stamps in Class distributor.

Canada

Aerosystems

3538 Ashby

St-Laurent, QUE H4R 2C1

Canada

(514) 336-9426, fax (514) 336-4383

Parallax distributor and Stamps in Class
distributor.

Page 60 Robotics! Student Guide Version 1.2

Appendix A: Parts Listing and Sources

Canada

HVW Technologies

300-8120 Beddington Blvd NW, #473
Calgary, AB T3K 2A8

Canada

(403) 730-8603, fax (403) 730-8903
http://www.hvwtech.com

Parallax distributor and Stamps in Class
distributor.

Germany

Elektronikladen

W. Mellies Str. 88

32758 Detmold

Germany

49-5232-8171, fax 49-5232-86197
http://www.elektronikladen.de

Parallax distributor and Stamps in Class
distributor.

New Zealand

Trade Tech

Auckland Head Office, P.O. Box 31-041
Milford, Auckland 9

New Zealand

+64-9-4782323, fax 64-9-4784811
http://www.tradetech.com

Parallax distributor and Stamps in Class
distributor.

United Kingdom

Milford Instruments

Milford House

120 High St., S. Milford

Leeds YKS LS25 5AQ

United Kingdom
+44-1-977-683-665

fax +44-1-977-681-465
http://www.milinst.demon.co.uk

Parallax distributor and Stamps in Class
distributor.

Robotics! Student Guide Version 1.2 » Page 61

Appendix A: Parts Listing and Sources

Parallax, Inc.
Stamps in Class
Digi-key
Jameco

National Semiconductor
Tower Hobbies

Scott Edwards Elect.
PARTS.

R/C servo circuits
Seattle Robotics
Resistor Color Codes
Stepper motors

Motor info

Simple motor to build
BEAM Robotics

Robots and resources
Australian Robotics
Honda Humanoid Robot
Robot behavior levels
Robotics Industry Assoc.
Robot Books

The Robot Store

"AA" Battery Info.

Isaac Asimov FAQ

Robotic
Internet Links

www.parallaxinc.com

www.stampsinclass.com

www.digikey.com (electronics parts and PIC chips)
www.jameco.com (electronics parts, motors and BASIC Stamps)
www.national.com (they make the LM2940-5)
www.towerhobbies.com (low cost servos)

www.seetron.com (serial LCD modules)
www.rdrop.com/users/marvin/ (look at Explorer Bot)
www.turbine.kuee.kyoto-u.ac.jp:/staff/onat/servobasics.html
www.seattlerobotics.org/guide/servos.html
webhome.idirect.com/~jadams/electronics/resistor_codes.htm
www.doc.ic.ac.uk/~ih/doc/stepper/
mot-sps.com/motor/mtrtutorial/prin/index.html
fly.hiwaay.net/~palmer/motor.html (great activity-try it)
nis-www.lanl.gov/robot/

www.robotics.com/resource.html

werple.net.au/~tonymerc/
www.honda.co.jp/english/technology/robot/index.html
ai.eecs.umich.edu/cogarch0/subsump/

www.robotics.org

www.robotbooks.com

www.robotstore.com

www.eveready.com
www.clark.net/pub/edseiler/WWW/asimov_FAQ.html

Page 62 * Robotics! Student Guide Version 1.2

Appendix B: Resistor Color Code

Resistor Color
Code

Most common types of resistors have colored bands that indicate
their value. The resistors that we're using in this series of
experiments are typically “1/4 watt, carbon film, with a 5%
tolerance”. If you look closely at the sequence of bands you'll
notice that one of the bands (on an end) is gold. This is band #4, &

the gold color designates that it has a 5% tolerance.

The resistor color code is an industry standard in recognizing the value of resistance of a resistor. Each color
band represents a number and the order of the color band will represent a number value. The first two color
bands indicate a number. The third color band indicates the multiplier or in other words the number of zeros.
The fourth band indicates the tolerance of the resistor +/- 5, 10 or 20 %.

| Color |

1" Digit | 2" Digit | Multiplier Tolerance
0 0 1

black
brown 1 1 10
red 2 2 100
orange 3 3 1,000
vellow 4 4 10,000
green 5 5 100,000
blue 6 6 1,000,000
violet 7 7 10,000,000
gray 8 8 100,000.000
white 9 9 1,000,000,000
gold 5%
silver 10%
no color 20%

Robotics! Student Guide Version 1.2 » Page 63

Appendix B: Resistor Color Code

A resistor has the following color bands:
Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold
Looking at our chart above, we see that Red has a value of 2.
So we write: "2".
Violet has a value of 7.

So we write: “27"

Yellow has a value of 4.
So we write: “27 and four zeros" or “270000".

This resistor has a value of 270,000 ohms (or 270k) & a tolerance of 5%.

Page 64 * Robotics! Student Guide Version 1.2

Appendix C: Changing the Board of Education Voltage Regulator

: rior to June , Parallax produced the Board o
Appendix C: Changing the Pri June 1999, Parallax produced the Board of
Board of Education Education with a LM7805CV voltage regulator. This

voltage regulator is fine for general use, but will
Voltage Regulator cause the BASIC Stamp to reset when used with 6

Volt power supplies and higher current devices like
servos or stepper motors. If your Board of Education has the LM7805CV voltage regulator, contact Parallax
and ask for a free BOE Voltage Regulator Upgrade Kit (stock code #28151). This appendix includes instructions
to remove the LM7805CV voltage regulator and replace it with the low-drop LM2940. Parallax will send it out
for free by U.S. Mail.

The voltage regulator is the only component that has a machine screw and nut sticking up on the circuit board
located right next to the "Stamps in Class” logo. To put in the new LM2940 regulator all you need is a small
soldering iron, wire cutters, screwdriver and a little solder. Replacing the 7805CV with an LM2940 only takes
a few minutes and is well worth the time. Here's how to do it.

Step 1: Remove the 7805 Voltage Regulator

Using your small wire cutters cut the leads of the existing 7805 regulator off flush with the case of the
regulator as shown in Figure C.1. When you're done with this step you should have leads still hanging off your
circuit board. You don't need to unsolder anything.

Figure C.1: Remove the 7805 regulator by cutting the leads close
to the regulator case and unscrewing the small nut.

Robotics! Student Guide Version 1.2 Page 65

Appendix C: Changing the Board of Education Voltage Regulator

Step 2: Install LM2940 Regulator

Put the LM2940 regulator where the old one was, trim the leads off a little and put the screw back in and
tighten the nut. Line it up just like the old one was so the leads from the new regulator are laying on top of the
ones you left when you cut out the old 7805 regulator. Figure C.2 shows what things should look like at this
point.

Figure C.2: Put the LM2940 in place of the 7805. The leads will line
up with the old leads of the 7805,

Step 3: Solder Regulator on Board of Education

Heat up the soldering iron if you haven't done so yet and get ready to solder the new leads from the LM 2940
to the leads they are laying on top of. Before you solder trim the leads of the LM 2940-5 so they don't
overhang the existing leads. Solder the leads together and you are finished. Be sure you tighten the 4-40
screw and nut that mounts the regulator to the Board of Education.

Page 66 * Robotics! Student Guide Version 1.2

Appendix D: Boe-Bot Competition Rules

Appendix D: Boe-Bot f you're planning a competition for autonomous robots,
Competition Rules these rules are provided courtesy of Seattle Robotics

Society (SRS). http://www.seattlerobotics.org/

(NOTE: The standard SRS rules have been reproduced here unmodified to encourage contests between
different groups, however a group might choose to build smaller courses to save money and simplify
transportation if all of their robots are similar in size to the Boe-Bot.)

Contest #1: Robot Floor Exercise

Purpose

The floor exercise competition is intended to give robot inventors an opportunity to show off their robots or
other technical contraptions.

Rules

The rules for this competition are quite simple. A 10 foot by 10 foot flat area is identified, preferably with
some physical boundary. Each contestant will be given a maximum of 5 minutes in this area to show off what
it can do. The robot's controller can talk through the various capabilities and features of the robot. As always,
any robot that could damage the area or pose a danger to the public will not be allowed. Robots need not be
autonomous, but it is encouraged. Judging will be determined by the audience, either indicated by clapping
(the loudest determined by the judge), or some other voting mechanism.

Contest #2: Line Following Rules

Objective

To build an autonomous robot that begins in Area "A" (at position "S"), travels to Area "B" (completely via the
line), then travels to the Area "C" (completely via the line), then returns to the Area "A" (at position "F"). The
robot that does this in the least amount of time (including bonuses) wins. The robot must enter areas "B" and
"C" to qualify. The exact layout of the course will not be known until contest day, but it will have the three
areas previously described.

Skills Tested

Robotics! Student Guide Version 1.2 « Page 67

Appendix D: Boe-Bot Competition Rules

The ability to recognize a navigational aid (the line) and use it to reach the goal.

Page 68 ¢ Robotics! Student Guide Version 1.2

Appendix D: Boe-Bot Competition Rules

Maximum Time to Complete Course
Four minutes.

Example Course

All measurements in the example course are approximate. There is a solid line dividing Area "A" from Area "T"
at position "F". This indicates where the course ends. The line is black, approximately 3/4 inches wide and
spaced approximately two feet from the walls. All curves have a radius of at least one foot and at most three
feet. The walls are 3 1/2 inches high and surround the course. The floor is white and made of either paper or
Tyvec. Tyvec is a strong plastic used in mailing envelopes and house construction.

Positions "S" and "F" are merely for illustration and are not precise locations. A Competitor may place the

robot anywhere in Area "A", facing in any direction when starting. The robot must be completely within Area
"A". Areas "A", "B" and "C" are not (a different color) on the actual course.

Robotics! Student Guide Version 1.2 » Page 69

Appendix D: Boe-Bot Competition Rules

Scoring

Each contestant's score is calculated by taking the time needed to complete the course (in seconds) minus
10% for each "accomplishment.” The contestant with the lowest score wins.

Accomplishments \

Stops in area A after reaching B and C 10%
Does not touch any walls 10%
Starts on command 10%

("Starts on command" means the robot starts with an external, non-tactile command. This could, for example,
be a sound or light command.)

Contest #3: Maze Following

Purpose

The grand maze is intended to present a test of navigational skills by an autonomous robot. The scoring is
done in such a way as to favor robots which are either brutally fast or which can learn the maze after one
pass. The object is for a robot which is set down at the entrance of the maze to find its way through the maze
and reach the exit in the least amount of time.

Physical Characteristics

The maze is constructed of 3/4" shop plywood. The walls are approximately 24 inches high, and are painted in
primary colors with glossy paint. The walls are set on a grid with 24-inch spacing. Due to the thickness of the
plywood and limitations in accuracy, the hallways may be as narrow as 22-inches. The maze can be up to 20-
feet square, but may be smaller depending on the space available for the event.

The maze will be set up on either industrial-type carpet or hard floor (depending on where the event is held).
The maze will be under cover, so your robot does not have to be rain proof; however, it may be exposed to
various temperatures, wind, and lighting conditions. The maze is a classical two-dimensional proper maze:
there is a single path from the start to the finish and there are no islands in the maze. Both the entrance and
exit are located on outside walls. Proper mazes can be solved by following either the left wall or the right
wall. The maze is carefully designed so that there is no advantage if you follow the left wall or the right wall.

Page 70 * Robotics! Student Guide Version 1.2

Appendix D: Boe-Bot Competition Rules

Robot Limitations

The main limit on the robot is that it be autonomous: once started by the owner or handler, no interaction is
allowed until the robot emerges from the exit, or it becomes hopelessly stuck. Obviously the robot needs to
be small enough to fit within the walls of the maze. It may touch the walls, but may not move the walls to its
advantage -no bulldozers. The judges may disqualify a robot which appears to be moving the walls excessively.
The robot must not damage either the walls of the maze, nor the floor. Any form of power is allowed as long
as local laws do not require hearing protection in its presence or place any other limitations on it.

Scoring

Each robot is to be run through the maze three times. The robot with the lowest single time is the winner. The
maximum time allowed per run is 10 minutes. If a robot cannot finish in that amount of time, the run is
stopped and the robot receives a time of 10 minutes. If no robot succeeds in finding the exit of the maze, the
one that made it the farthest will be declared the winner, as determined by the contest's judge.

Logistics

Each robot will make one run, proceeding until all robots have attempted the maze. Each robot then does a
second run through the maze, then the robots all do the third run. The judge will allow some discretion if a
contestant must delay their run due to technical difficulties. A robot may remember what it found on a
previous run to try to improve its time (mapping the maze on the first run), and can use this information in
subsequent runs-as long as the robot does this itself. It is not allowed to manually "configure" the robot
through hardware or software as to the layout of the maze.

Robotics! Student Guide Version 1.2 » Page 71

