

2017

Smart.IO User Guide
https://imagecraft.com/smartio
V0.1 2017/12/14 richard@imagecraft.com

RICHARD MAN

https://imagecraft.com/smartio

Table of Contents
OVERVIEW ... 5

Introduction .. 6

Firmware Driven UI ... 8

Where to Find Information .. 8

Overview of the Smart.IO System ... 9

Customized App for Product Release ... 9

Evaluating Smart.IO Using the Smart.IO Starter Kit ...10

ST-Nucleo Driver ...11

UI Demo ..11

Command Demo ..11

Modifying the test program ...15

INTEGRATING WITH SMART.IO ...16

Hardware Integration Guide ...17

Physical dimensions: ...17

Power Requirements ...17

Smart.IO Module Placement Recommendations ..17

5V System Compatibility ..17

2x6 0.1” Header ...18

Microcontroller Interface ..18

SPI ...18

Host IRQ ..19

Smart.IO RESET ..19

UART Pins ...19

Bootloader Mode ..19

JTAG pins ..19

Arduino Style Shield ..20

Arduino Shield Header Pinouts ..20

ST-Nucleo Boards with Arduino-style Headers ..20

AVR Arduino ..21

Arduino Shield JTAG Header Pinouts ..22

FTDI/USB Micro-USB Connector ...22

Software Integration Guide ..24

Smart.IO API ..24

Host Interface Layer Architecture ..24

Blocking API ..25

Interrupts..25

Host Interface Layer Source Files ..25

Porting Tasks ..26

Hardware Initializations ..26

SPI Data Transfer ..26

Host IRQ Interrupt Handling ...26

Other Source Files in the Host Interface Layer ...26

Complete Data Flow of a Smart.IO API Call ..26

Smartphone App ...28

Some Sample Screens and Additional Features ..28

Caching - an In-App Purchase Option ..30

A Program Template ...32

Naming Conventions ..32

Example UI ..32

Main Loop ..33

Save and Restore UI State ..34

Creating the UI ...34

UI Callback Functions ..35

Initial Setup ..36

Summary ...37

UI DESIGN ...38

GUI Slice ...39

Virtual Screen Sizes and Screen Orientation ...41

List of UI Controls ..42

Input Elements ...42

Output Controls ..43

UI Elements ..45

Input UI Elements ..46

Adding List Items ...46

On/Off buttons ...47

3-Position Button ..48

Slider ...49

Incrementer ..50

Expandable List ...51

Picker ...52

Multi-Selector ...53

Number Selector ..55

Time Selector ...56

Analog Time Selector ...57

Calendar Selector ..58

Weekday Selector ..60

OK Button ..61

OK_LINKTO Button ...62

CANCEL/OK Button ...62

Checkboxes ...63

Radio Buttons ..64

Text Entry ..65

Password Entry ..66

API INTRODUCTION ..68

API Categories ..69

Terminology ...69

App Version ...69

Error Conditions ..70

Memory Blocks ..70

UI Cache ...70

Local Storage ..71

API Dataflow..71

Callback Functions ..71

Data Types, Strings and Transfer Memory ..72

Initialization Function ...74

Page Management ..75

Input UI Elements ..76

Output UI Elements ...78

Auto Layout and Groups ..80

Enable-If Command ...83

Update Functions ..83

Popups ..85

Freeform Slices ...87

Popup Alerts ..89

UI Element States ...90

Miscellaneous UI Functions ...91

Fonts ...92

Text Control Codes..92

Color Values ..94

Miscellaneous ..95

App Menu ..95

App Title ..96

Page Title...97

EEPROM Commands ..98

System Commands ...98

Miscellaneous System Commands ..98

Phone Commands ...99

APPENDIX .. 100

Appendix A: Using Smart.IO EEPROM for UI State Storage ... 101

Appendix B: Smart.IO Module Schematic .. 103

Appendix C: Smart.IO Arduino Shield Schematic .. 104

OVERVIEW

Introduction
Smart.IO is a new way of creating UI (User Interface) for embedded designs. Indeed, the word
UI is typically not associated with an embedded design unless and until it becomes a product.
With Smart.IO, all that changes: with Smart.IO, an embedded designer can create a UI in a
few lines of code, and without writing any wireless or app code, the UI will run on any
iOS and Android devices. The only investment is to add the Smart.IO hardware module to the
design, and to build the firmware with the Smart.IO API library, which is provided in source code
form. The system is compatible with nearly all microcontrollers.

This is a sample UI:

The UI has a on/off button, a slider, a few time selectors, and a checkbox. This is the entirety of
the function that creates the UI, with the UI controls creation highlighted in red:

void CreateUI(void)
 {

 tHandle p0, p1, p2, p3;
 tHandle u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10;

 SmartIO_LoadCache(PRODUCT_ID, BUILD_ID);
 p0 = SmartIO_MakePage();
 SmartIO_AppTitle("Smart Wall Plug");
 u0 = SmartIO_MakeOnOffButton(0, 0, 1, Button1);
 SmartIO_AddText(u0, "Power");
 SmartIO_SetSliceIcon(u0, SMARTIO_ICON_POWER);
 u1 = SmartIO_MakeSlider(1, 0, 30, Slider1);
 SmartIO_EnableIf(u0+1, u1+1, 0);

 SmartIO_MakeSpacerSlice(2);
 u2 = SmartIO_MakeLabel(0, 1, "Auto On/Off Schedule");
 u3 = SmartIO_MakeLabel(0, 0, " Weekdays");
 u4 = SmartIO_MakeTimeSelector(0, 0, "17:00", time_selector1);
 SmartIO_AddText(u4, "ON at");
 SmartIO_SetSliceIcon(u4, SMARTIO_ICON_QUERY);
 u5 = SmartIO_MakeTimeSelector(0, 0, "0:00", time_selector2);
 SmartIO_AddText(u5, "OFF at");
 SmartIO_SetSliceIcon(u5, SMARTIO_ICON_QUERY);
 SmartIO_MakeSpacerSlice(1);

 u6 = SmartIO_MakeCheckboxes(1, 1, 0);
 SmartIO_AddListItem(u6+1, "Same as 'Weekdays'");

 u7 = SmartIO_MakeLabel(0, 0, " Weekend");
 u8 = SmartIO_MakeTimeSelector(0, 0, "18:00", time_selector3);
 SmartIO_AddText(u8, "ON at");
 SmartIO_SetSliceIcon(u8, SMARTIO_ICON_QUERY);
 u9 = SmartIO_MakeTimeSelector(0, 0, "1:00", time_selector4);
 SmartIO_AddText(u9, "OFF at");
 SmartIO_SetSliceIcon(u9, SMARTIO_ICON_QUERY);
 SmartIO_GroupObjects(0, u3, u4, u5, u7, u8, u9, 0);
 SmartIO_MakeSpacerSlice(3);
 SmartIO_AutoBalance(p0);
 SmartIO_SaveCache();
 }

As seen in the example, it takes only one function call to create each UI element. The rest of the
code adds text labels to UI elements and are the “magic stuff” that allow the UI to have very

similar balanced look and feel on any devices, regardless the smartphone OS or the device
resolution.

Firmware Driven UI
In a Smart.IO system, the embedded firmware creates the UI. This is different and more efficient
than the traditional method of “writing an app for an embedded product”, which involves
separate UI developers to work with firmware engineers and then protocols must be designed
and implemented. Changes in the UI app or the embedded firmware, due to design changes
must be coordinated among separate engineers, introducing delays and potential errors.

With Smart.IO, the UI is embedded in the firmware, and thus eliminating many potential errors.

Where to Find Information
The main page for Smart.IO is here: https://imagecraft.com/smartio/

The software download page, including software updates, is here:
https://imagecraft.com/download/smart-io-downloads

The documentation is here: https://imagecraft.com/documentation/smart-io-documentation

ImageCraft forums is here: https://imagecraft.com/forums

https://imagecraft.com/smartio/
https://imagecraft.com/download/smart-io-downloads
https://imagecraft.com/documentation/smart-io-documentation
https://imagecraft.com/forums

Overview of the Smart.IO System
The Smart.IO toolkit is made up of both a hardware module and software components. This
table lists the components.

Component Description

Smart.IO
hardware module

Provides hardware for BLE communication and the firmware support
to implement the Smart.IO API

Host Interface
Layer

Source code in Standard C that an embedded user compiles with
their host MCU firmware. Converts the Smart.IO API calls into
command stream for the Smart.IO firmware.

Smart.IO API The API that the embedded users call to build and interact with the
UI

iOS/Android
Smart.IO app

Smartphone app that interfaces with a Smart.IO-enabled device and
provides the UI for the device

To use Smart.IO in your design:

1. Add the Smart.IO hardware module to your hardware. It interfaces to the host MCU via
SPI.

2. Port the Host Interface Layer to your MCU and compiler, if it has not been done yet.
3. Add Smart.IO API calls to your firmware to create the UI
4. DONE!

All of these will be explained in details.

Customized App for Product Release
The Smart.IO App is a generic app that works with any Smart.IO enabled devices. When you
are ready to release a product, we can customize an app specific to your device with your
branding and logos and secured ID so the app will only work with your devices. ImageCraft can
even provide more customization options such as your own graphics and performance
enhancements. Visit our webpage https://imagecraft.com/smartio or contact us for details.

https://imagecraft.com/smartio

Evaluating Smart.IO Using the Smart.IO Starter Kit
If you have purchased the Smart.IO Starter Kit, you can start evaluating the Smart.IO
technology immediately. However, having the Starter Kit is not mandatory: you can use other
hardware to test Smart.IO and you may safely skip or skim this section if you do not have the
Starter Kit.

The Smart.IO Starter kit contains:

1. A Smart.IO module (denoted by the red ellipse in the photo below)
2. An Arduino compatible shield (the board in the middle where the Smart.IO module is

sitting on)
3. An ST-Nucleo-F411 MCU board (the bottom board)

Figure 1 Smart.IO Starter Kit

Note: only the Smart.IO module is an essential part of using Smart.IO. The Arduino shield and
the ST-Nucleo are not necessary for using Smart.IO, and are part of the evaluation kit only. In
an embedded user application, they may use any MCU of their choice, needing only to
incorporate the Smart.IO module into their hardware designs.

ST-Nucleo Driver
When you receive the kit, connect a USB cable to the ST-Nucleo board at the BOTTOM of the
stack. Windows should automatically install the driver. If not, please visit http://st.com and
search for “ST-Nucleo driver”. The driver should enable the following features:

1. Windows virtual comport: you can find the comport number under “Control
Panel->Device Manager->Ports (COM & LPT)”

2. ST-LINK debug pod
3. A virtual removable drive

The simplest way to download a new firmware to a ST-Nucleo is to drag and drop a suitable .bin
file with the firmware to its virtual removable drive. For advanced development, you can also
use the ST-LINK debug pod and a compiler/debugger toolset.

UI Demo
The ST-Nucleo board is pre-programmed with demo test firmware. The demo is included in the
Host Interface Layer source zip file, which is available on the webpage
http://imagecraft.com/download/smart-io-downloads.

To run the demo:

1. Connect a USB cable to the ST-Nucleo (the bottom board).
2. Install the Smart.IO iOS or Android smartphone app on your smartphone (search for

“ImageCraft SmartIO” on the respective phone store).
3. Enable BLE (Bluetooth) access on the smartphone.
4. Invoke the Smart.IO app.
5. Connect to the Smart.IO on the app (on Android, the name may not be visible,

depending on the Android version, but it will have a green dot next to the name).
6. After a few seconds, a sample UI page will pop up. Note that the Android version may

take up to 10-20 seconds (but often shorter) due to Android BLE architecture. We are
looking into improvements on this.

The sample UI is the “Smart Wall Plug” example in the first chapter.

Command Demo
There is another demo called the “Command Demo” included in the Host Interface Layer source
code .zip file (the preloaded one is called the “UI Demo”). To run the Command demo,
download the .zip file from our website http://imagecraft.com/download/smart-io-downloads.
After unzipping the file, browse to the directory “MCU-App\Command Demo-ST32F411-
JumpStartC”

http://st.com/
http://imagecraft.com/download/smart-io-downloads
http://imagecraft.com/download/smart-io-downloads

Figure 2 Smart.IO “MCU-App” Directory

Then drag the file “Command Demo-ST32F411-JumpStartC.bin” to the ST-Nucleo’s virtual drive
folder (the .bin file for the UI Demo is also included in the zip file so you can revert to the UI
Demo as needed). This will program the ST-Nucleo with the firmware.

To run the demo, you need to connect both the Smart.IO Arduino shield and the ST-Nucleo to
your PC/Mac via USB cables, and set up terminal programs for display.

Setting up the terminal programs
There is one USB port on the Arduino shield, and another one on the ST-Nucleo. Drivers should
be automatically installed by the OS. In case of any issues, the ST-Nucleo driver can be found
on http://st.com (search for “ST-Nucleo USB driver”). The shield’s USB port uses the FTDI
serial-to-USB chip and its drivers can be found on http://ftdichip.com.

MacOS comes with built-in terminal program, and Windows users may use the “PuTTY”
terminal program. Set the baudrate to 9600.

The ST-Nucleo is running an interactive program which allows you to type commands. The
Smart.IO firmware is using the terminal (through the USB port on the Arduino shield) for
diagnostic message display only.

Startup operations

1. Connect the USB cables to the starter kit and invoke the terminal programs. The kit gets
its power from the USB cables.

http://st.com/
http://ftdichip.com/

2. Install the Smart.IO iOS or Android smartphone app on your smartphone (search for
“ImageCraft SmartIO” on your respective phone’s app store).

3. Enable BLE (Bluetooth) access on the smartphone.
4. Invoke the Smart.IO app.
5. Connect to the Smart.IO on the app (on Android, the name might not be visible,

depending on the Android version, but it will have a green dot next to the name).
6. If the terminal programs have been set up correctly, you should see sign-on messages

from both boards.
7. Wait until you see “BLE connected” message on the ST-Nucleo terminal window before

proceeding.
8. If you do not see the “BLE connected” message after 10 to 15 seconds, click on the gear

icon on the app and select “Rescan devices”, and then restart from Step 5 and reset the
kit.

Figure 3 BLE Scanning Page on the Phone App

Figure 4 Sign-on message on the ST-Nucleo terminal window

Figure 5 Sign-on message from the Arduino shield+Smart.IO module

Running the test program
Once connected, hit RETURN on the ST-Nucleo terminal (and NOT the Smart.IO window!),
and you should see a prompt “> “ at which you may type in a command followed by carriage
return. For the purposes of this demo, all commands are in the form of “128 <number>” where
<number> is 0 to 81.

The test programs are summarized in the following table 2. The most complex one is “128 4”.
You may either run the commands with or without resetting the boards and restarting the
process. If you do not reset the boards, most tests create a new page with sample UI, and you
can swipe sideways to access different pages.

Test Command Description

128 0 Creates a “user application menu”

128 1 Demonstrates a textbox with font control

128 2 Smart Wall Plug UI, slightly simplified

128 3 Demonstrates checkboxes, radio buttons, and multiline textbox

128 4 Smart Wall Plug UI

128 5 Sample UI for a battery charger

128 6 UI for a Pokemon panel

128 7 Shows two text entry boxes for text input

128 8 Demonstrate non-UI Smart.IO API: generating random number,
unique ID, and EEPROM storage

Running “128 4” should produce a screen looking like this, the same as the UI Demo:

1 Future revisions of the test program may allow more test samples and the allowable number may
increase.
2 Again, this is subject to future revisions

Figure 6 "Smart Wall Plug" Sample UI

Changing the sliders or the time values send the updated values to the ST-Nucleo test program.

Modifying the test program
The source code of the test program and the “Host Interface Layer” (see the “Quick Start Guide
to Smart.IO” in the documentation page) are available on the download page.

INTEGRATING WITH SMART.IO

Hardware Integration Guide
The Smart.IO module is designed to be easily incorporated into an embedded design with a
host MCU. It provides the hardware and software interface to smartphones over the BLE 3
wireless interface. This document describes the hardware interface. Please see the separate
document "Smart.IO Software Integration Guide" for the software interface and porting guide.

Physical dimensions:
● 15.5mm x 25.5mm (0.6” x 1”)
● 2x6 0.1in (2.54 x 2.54) male header

Power Requirements
● 3.3V Vdd
● Compatible with 3.3V Arduino with the Smart.IO Arduino shield
● Normal current draw: transmitting (BLE) 15mA @ +8dBm.
● Active: 2mA
● Sleep mode current draw: 17uA + 0.3uA for I2C EEPROM Standby

Smart.IO Module Placement Recommendations
To obtain the best performance for BLE, the following guidelines should be observed:

● Any host design electronic components should be kept away from the antenna (the white
block) of the Smart.IO module

● Likewise, the PCB’s ground planes should be kept away from the same area
● The Smart.IO module should not be covered by a grounded metal case

5V System Compatibility
The Smart.IO module works with a Vdd supply voltage of 1.7V to 3.3V with a maximum of 3.6V.
When working with 5V devices like some of the Atmel AVR and older MCUs, care must be
taken to ensure that the Vdd input does not exceed 3.6V. Moreover, the I/O pins must be level-
shifted between the two devices; for example, by using a device such as the TXB0108 8-
channel bidirectional channel logic level converter, available here:
https://www.adafruit.com/product/395 (if the link is no longer valid, just do a web search with the
above descriptions as search terms).

3 Bluetooth Low Energy, the wireless communication mechanism between the Smart.IO module and
smartphones / smart devices

https://www.adafruit.com/product/395

2x6 0.1” Header
The host hardware interfaces with the Smart.IO through the 2x6 0.1” male header. Looking
down at the chip module with the header rows on top, pin 1 of the header is located at the lower
right corner.

Pin Number (I/O)4 Function Pin Number (I/O) Function

2 / O USART Tx 1 / I USART Rx

4 / I RESET 3 / I Vdd5

6 / I SWCLK 5 / I/O SWDIO

8 / O SPI MISO 7 / I SPI MOSI

10 / I SPI nCS 9 / I SPI SCK

12 / I GND 11 / O Host IRQ / DIO7

Microcontroller Interface
The interface between the host MCU and the Smart.IO consists of:

● SPI - MOSI, MISO, SCK (clock), nCS (chip select)
● Host IRQ - interrupt signal (Smart.IO to MCU), active low. Also used for bootloader

firmware update
● RESET - resetting the Smart.IO module, active low
● Vdd and GND

SPI
The MCU is the SPI master in this setup and drives the SPI clock. As multiple SPI slaves may
sit on a single SPI bus, the nCS (Chip Select) is used by the SPI master to select the SPI slave
which should respond to a particular transaction.

● SPI in 8-bit mode
● Maximum bus frequency is 1 MHz
● CPOL is 0 and CPHA is 1
● MSBit transmitted first
● nCS is active low

4 (I/O) = from the point of view of the Smart.IO module
5 +3.3V to 3.6V required

Host IRQ
To inform data availability from Smart.IO to the host MCU, the Host IRQ pin is used. This must
be connected to a GPIO pin in the host MCU. On the MCU:

● Configured the connected pin as an input pin
● Input interrupt triggered by transition from low to high
● Signal is pulled high by the Smart.IO module
● Signal is in high impedance state

The pin is held high as long as data is being transmitted from Smart.IO. It’s also used for
updating firmware using the bootloader. See below.

Smart.IO RESET
The host MCU may use this pin to reset the Smart.IO module. This must be connected to a
GPIO pin in the host MCU. On the MCU:

● Configured the connected pin as an output pin
● Normal state is level high
● Must be pulled high by either the MCU internal resistor or an external resistor
● Pull low for one to ten milliseconds to cause a Smart.IO hardware reset

UART Pins
In addition to the SPI and IRQ pins, other pins from the internal BlueNRG1 pins are brought out
as well. These pins can be left unconnected in your hardware design, if you do not use their
features.

To facilitate advanced debugging, the host firmware can invoke a Smart.IO API to emit debug
info on the UART port (at 9600 baud).

UART can also be used in bootload mode. See below.

Bootloader Mode
You may put the BlueNRG1 in bootloader mode by resetting and pulling the DIO7 (Host IRQ)
pin high. You will need to use the UART port for bootloader operations. The Smart.IO Arduino
Shield available from ImageCraft is a simple to use option for using the bootload mode.

JTAG pins
The JTAG pins (SWCLK and SWDIO) are for flash programming using the JTAG/SWD port.

Arduino Style Shield
WARNING: All official AVR Arduino except Arduino “mini PRO” with Mega328P are 5V
only, and will need logic level shifter to be compatible with the Smart.IO.

ImageCraft provides an optional Arduino shield with a dedicated socket for the Smart.IO
module. The Smart.IO module and the shield are compatible with 3.3V Arduino-like systems.
The Smart.IO module can draw power from either the shield’s Micro-USB connector, or from the
Arduino 3.3V pin.

Arduino Shield Header Pinouts
When mounted on the Arduino-style shield, the signals in the 2x6 header are routed to the
following pins in the 10-pin Arduino header:

ST Nucleo-401 Pin
Number

Function ST Nucleo-401 Pin
Number

Function

1/ PA9 Host IRQ / DIO7 6/ PA5 SPI SCK

2/ PC7 Smart.IO RESET 7/ GND GND

3/ PB6 SPI CS 8/ Vss Vss

4/ PA7 SPI MOSI

5/ PA6 SPI MISO

The rest of the 2x6 header pins are routed to the JTAG/SWD header and the UART port. See
below.

ST-Nucleo Boards with Arduino-style Headers
This is the pinout diagram of the ST Nucleo-411 Arduino compatible board. Other ST Nucleo
boards have very similar pinouts:

Figure 7 ST-Nucleo F401RE Pinouts

To put Smart.IO in bootload mode for a firmware upgrade with the ST Nucleo-411, you would
jumper D8/PA9 and AVDD together while resetting the Smart.IO module.

AVR Arduino
WARNING: All official AVR Arduino except Arduino “mini PRO” with Mega328P are 5V
only, and will need logic level shifter to be compatible with the Smart.IO.

This is the pinout diagram of an Arduino board. Note that the diagram uses the Uno R3, as it is
considered the “standard” basic Arduino. However, the Uno R3 is 5V, and thus not directly
compatible with Smart.IO. However, the Arduino Mini PRO with Mega328P is 3.3V compatible
and has the exact same pinouts.

Figure 8 AVR Arduino Pinouts

To put Smart.IO in bootload mode for a firmware upgrade with the Arduino, you would jumper
PB0 and AREF together while resetting the Smart.IO.

Arduino Shield JTAG Header Pinouts
Additionally, the Smart.IO Arduino shield board comes with a JTAG/SWD header. This is useful
for programming the Smart.IO firmware using a JTAG/SWD pod such as the Segger JLINK or
the ST ST-LINK. (The pinout details are not presented here since they are standard JTAG
header pinouts.) The SWCLK and SWDIO signals from the 2x6 Smart.IO header are routed to
this header.

FTDI/USB Micro-USB Connector
FTDI/USB is part of the original V1 release of the Smart.IO Arduino shield and is an optional
component in the V2 release. It uses the FTDI industry standard driver. It provides a VCOM port
to the Smart.IO module. Smart.IO API functions are provided to use the VCOM for debugging

purposes. It can also be used for bootload programming. The UART Tx and UART Rx from the
2x6 Smart.IO header are routed to the FTDI/USB chip (V1) or the 4-pin UART connector (V2).

Software Integration Guide
This chapter describes the software interface, including the porting guide for the Smart.IO host
interface layer software. The API and graphics elements are described later.

The Smart.IO host interface layer is provided in Standard C source code and must be compiled
and linked with the embedded firmware that uses Smart.IO. ImageCraft provides working ports
of the host interface layer to the following platforms and thus you do not need to read this
document if you are using one of these platforms.

Device Compiler Flash Memory
(bytes)

RAM (bytes)

STM32F411 JumpStart C for Cortex Under 10 K 1K - 2K

AVR JumpStart C for AVR Under 10K 1K - 2K

Smart.IO API
The host MCU firmware calls the Smart.IO API functions to create GUI objects and also to
provide callback functions for host interface layer to invoke when input elements are changed
(e.g. toggling an on/off switch or change the value of a slider).

Smart.IO API are a set of C functions (prefixed with “SmartIO_”). They implement the public
software interface to Smart.IO. A sample call is:

tHandle SmartIO_MakeOnOffButton(
uint16_t alignment,
uint16_t variation,
uint16_t initial_value,
void (*callback)(uint16_t));

This creates an on/off button on the app screen. It returns a “handle” to the on/off button object
to the calling firmware. See the chapter Software API for details.

Host Interface Layer Architecture
The Host Interface Layer consists of the following modules:

1. Functions that take the API data and translate it into command stream. These are
machine-independent.

2. Functions that perform SPI data communication. These are MCU-specific.
3. Functions that initialize and access MCU hardware components. These are MCU-

specific.

API are described in a later chapter. ImageCraft provides pre-built host interface layer in binary
forms for some popular MCUs such as the STM32F4xx, Atmel AVR series. We will provide
additional pre-built binaries as they become available. Please visit our page
https://imagecraft.com/smartio/ for details.

Blocking API
When the host firmware makes a Smart.IO API function call, there is some communication and
processing (including BLE 6 data transfers) overhead before a result is returned to the host
firmware. To simplify the Host Interface Layer design and implementation, Smart.IO API
functions are blocking and do not return until the result is returned (and processed) from the
smartphone app. Thus from the point of view of the firmware, after it makes a Smart.IO API call,
it may for some times before the function returns. The time period is usually short, under a
millisecond, but sometimes may take longer due to BLE data communication overhead.

As most API functions are used for creating UI elements, they are usually run in the initialization
phase of the host firmware, and the blocking nature should not affect the performance of the
host MCU.

Interrupts
Smart.IO generates data to the host MCU from two different sources:

1. Synchronous: as part of the Smart.IO API call chain.
2. Asynchronous: when the end user interacts with the smartphone app and changes the

value of an input element, the new value needs to be communicated to the host
firmware.

As the host MCU is the SPI master, whenever there are data available, the Smart.IO module
must inform the host MCU so that the host software can initiate an SPI transfer. This is done by
using a hardware pin for host interrupt.

The actual interrupt handling is provided in the Smart.IO Host Interface Layer. However, the
method to associate an interrupt handler to a hardware GPIO 7 pin is MCU specific.

Host Interface Layer Source Files
The following source files are provided:

● smartio_api.c/.h - the API functions. The host firmware uses these to access the
Smart.IO functionality.

● smartio_interface.c/.h - the low-level access functions used by the API code.

6 Bluetooth Low Energy, the wireless communication mechanism used in Smart.IO
7 General Purpose Input Output

https://imagecraft.com/smartio/

● smartio_hardware_interface.c/.h - the MCU specific hardware access functions. These
must be ported to a specific MCU. The port is either provided by ImageCraft, or must be
provided by the user.

Porting Tasks
To port the Smart.IO Host Interface Layer to a MCU, modify the smartio_hardware_interface.c
file to perform the following:

Hardware Initializations
Configure the SPI as follows:

● SPI master
● 8-bit mode
● Maximum bus frequency is 1 MHz
● CPOL is 0, CPHA is 1
● MSBit transmitted first
● nCS (Chip Select) is active low

Configure the Host IRQ pin: the Host IRQ pin should be configured as input interrupt source,
active high - i.e. interrupt should be triggered when the signal goes from low to high. The signal
remains high as long as the Smart.IO is transmitting data to the MCU host. The signal is pulled-
down by the Smart.IO module.

SPI Data Transfer
You must provide a function to read and write from the SPI interface. Since the API works in
blocking mode, no interrupt mode is required.

Host IRQ Interrupt Handling
You must associate the provided interrupt handler with the Host IRQ interrupt. The interrupt
should trigger when the signal goes from low to high.

Other Source Files in the Host Interface Layer
Other files in the Host Interface Layer should not be modified. They are written in Standard C
and should be portable to most MCU.

Complete Data Flow of a Smart.IO API Call
Taking the above together, the following is the complete data flow of a single Smart.IO API call.

Host MCU
Firmware

Smart.IO Host
Interface Layer

Smart.IO
firmware

BLE 8 firmware Smart.IO
smartphone
app

Data flow direction → → → → → → → → → → → → → → → → → → → → →

Smart.IO API
call

 Convert API
request to
command
stream

 Initiate SPI data
transfer

 Process SPI into
BLE data

 BLE transfer

 GUI actions

← Data flow direction

 Command
response

 BLE transfer

 Process BLE
data into SPI
stream

 Pull Host IRQ
high

 Interrupt handler
reads SPI data
stream

 Return data to
host MCU

Receive return
value

8 ST BlueNRG-1 BLE SoC

Smartphone App
One may look at the Smart.IO app as a remote display manager: for example, the embedded
system uses a simple C API function call (e.g. SmartIO_MakeSlider), and the app displays an
interactive slider. When the app user (e.g. the user of the embedded device) adjusts the slider,
the updated value is sent back to the embedded device for processing.

Once paired with a Smart.IO-enabled device, the embedded device sends UI commands
through the BLE interface and the app interprets the commands, usually resulting in some UI
element(s) being displayed.

A key innovation with Smart.IO API is that we utilize the concept of GUI slices, so that the
generated UI will look good on any smartphones regardless of OS and screen resolution, from
the iPhone 5 to the iPad Pro, and any Android devices. The embedded firmware engineer does
not need to worry about screen resolution, exact pixel placement, etc.

Some Sample Screens and Additional Features
The Smart.IO app is designed to look for BLE UUIDs that conforms to a certain signature.

Figure 9 iOS Phone App Device Scanning Page

The Smart.IO API is designed to minimize BLE communication whenever possible. For
example:

Figure 10 A Simulated Sample Pokémon Game Control App

In this screencap, while it is hard to see, the slider control is slightly dimmed and cannot be
changed. This is because the embedded (UI) designer is using a Smart.IO API call to make the
enabling of the slider depend on the state of the expandable list: when no simple Pokémon
selection is currently being made, the slider is disabled. This dependency check and slider
enabling is handled entirely by the app, and does not involve communication to the embedded
firmware (which is expensive in terms of BLE communication overhead).

Here’s the screencap of the state when one Pokémon has been selected:

Figure 11 Sample Pokémon Selection

Again, while it may be hard to see from a screencap, the slider control is now at full brightness,
and the slider can be adjusted by the app user.

Caching - an In-App Purchase Option
To encourage widespread adoption of the Smart.IO technology, the basic app is offered free to
users. However, one potential problem with having the UI generation in the embedded firmware,
is that the UI code effectively resides on the embedded system, and must be sent over to the
app. This can take a bit of due to BLE overhead.

Therefore: a handy solution is caching of the UI generation instructions. A complex UI page that
may take 5-6 seconds to generate could be reduced to about a couple of seconds once caching
has been enabled. NOTE: caching is only enabled in the paid-for app (an in-app purchase
option is available.)

For a fully customized app, further time reductions can be facilitated so that the UI becomes
effectively is as fast as a native app.

A Program Template
This chapter describes the basic structure of a program that uses Smart.IO.

Naming Conventions
All Smart.IO API functions start with the prefix SmartIO_ , all other functions are supplied by the
MCU firmware.

Example UI
The example used in this document is an embedded device that controls the power output of an
FET controlled port using PWM. Such a device can be used to control the brightness level of an
LED light or similar appliances. The example uses the ST32F411 MCU, and the FET is
connected to PORTA pin 2. Timer2 is used to generate the PWM that drives the output.

In this document, we will only look at the upper two UI controls: the on/off Power button and the
slider underneath. (The other portions of the UI are for implementing advanced scheduling
features.)

As a reminder, this UI looks the same on both Android and iOS smartphones and tablets,
without the MCU firmware engineer needing to know anything about the screen resolution or
target OS.

Main Loop
The body of the main function looks like this:

int last_state = 0;
while (1)
 {
 while (last_state == connected)
 if (SPI_State == SPI_SMARTIO_ASYNC_REQUEST)
 SmartIO_ProcessUserInput();

 if (connected)
 {

 DelayMSecs(3);
 CreateUI();

 RestoreUIState();
 }
 else
 SaveUIState();
 last_state = connected;
 }

In the inner while loop, whenever the connection state is unchanged, the code checks for the
condition “if (SPI_State == SPI_SMARTIO_ASYNC_REQUEST)”. This condition is set by an
interrupt handler, and becomes true only if there is asynchronous data coming from the
Smart.IO module. When the condition is met, the conditional code calls the Smart.IO API
function SmartIO_ProcessUserInput() to process the data.

If the connection changes, then the loop exits, and if this is a new connection, the firmware calls
a function CreateUI() to create the UI.

The code above loops continuously, checking for the condition each time through the loop. Per
usual embedded programming practice, in a device with power saving features, the MCU
firmware can put the MCU in sleep mode and wake up the MCU whenever the connection state
changes.

Save and Restore UI State
A side effect of letting the embedded firmware creating the UI via Smart.IO is that the state of
the UI (e.g. the value of a slider, or the state of an on/off button) is not stored in the app, since
the app can be run on different devices. One “logical” default potential option would be for the
smartphone app to store the UI state “on the cloud”, but as that involves internet connectivity
and therefore exposes the data to security risks, ImageCraft rejected this option.

Instead, the state is stored in the embedded system itself, in a permanent storage medium such
as EEPROM. If the embedded system does not have its own EEPROM, two Smart.IO API
functions provide read and write access to the Smart.IO module’s internal EEPROM. See the
Appendix on how to implement the UI state functions, SaveUIState() and
RestoreUIState(), using these API calls.

Note that if the embedded system is powered off, unless extraordinary measures are taken,
then the above example scheme of calling the RestoreUIState function upon phone
disconnect will (obviously) not work, as the MCU will stop running. This could impact the UI
state when the device is restarted, so if this is important in the product design, then the firmware
should save the UI state periodically, instead of only when the phone is disconnected, perhaps
by using a timer.

Creating the UI
The following is an excerpt of the CreateUI() function. The important lines are highlighted in
red,

void CreateUI()
 {
 tHandle p0, p1, p2, p3;
 tHandle u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10;

 p0 = SmartIO_MakePage();
 SmartIO_AppTitle("Smart Wall Plug");
 u0 = SmartIO_MakeOnOffButton(0, 0, 1, Button1);
 SmartIO_AddText(u0, "Power");
 SmartIO_SetSliceIcon(u0, SMARTIO_ICON_POWER);
 u1 = SmartIO_MakeSlider(1, 0, 30, Slider1);
 SmartIO_UpdateSlider(u1+1, current_light_value);

 SmartIO_EnableIf(u0+1, u1+1, 0);
 …
 }

tHandle is a 16-bit integer type, defined as a C typedef. It is used by Smart.IO API to represent
a “handle” to a UI object. You might notice that sometimes the handle value +1 (e.g. u0+1) is

used instead of just the handle value. This is an artifact of using a Smart.IO concept called a
GUI Slice for device-independent GUI display. See other Smart.IO documentation for details.

The important functions are:

SmartIO_MakePage(): Smart.IO supports UI with multiple pages, so the first function in
creating UI is to create a page using this function..

SmartIO_AppTitle(): changes the title, which is displayed at the top of the app screen.

SmartIO_MakeOnOffButton(): creates an on/off button control.

SmartIO_MakeSlider(): creates a slider.

SmartIO_EnableIf(): controls whether a set of controls is enabled or not, depending on the
state of another UI control. In this example, the slider is only enabled if the on/off button is on.
This feature allows a more responsive UI without requiring the MCU firmware to make every
decision.

UI Callback Functions
When you call a Smart.IO API function to create an input control (such as a slider or an on/off
button), you must also specify a callback function. When the end user (i.e. the person using the
phone app) changes the value of an input control, the Smart.IO firmware calls the associated
callback function with the new value as an argument. For example, in this sample UI:

u0 = SmartIO_MakeOnOffButton(0, 0, 1, Button1);
…
u1 = SmartIO_MakeSlider(1, 0, 30, Slider1);

The last argument of the two function calls Button1 and Slider1 are callback functions. The
sample implementations look like these:

int current_light_level;

void Button1(uint16_t val)
 {
 if (val == 0)
 {
 // TURN OFF timer2 and clear output pin
 timer2.Disable();
 porta.MakeOutput(2, OSPEED_HIGH);
 porta.Clear(2);
 }

 else
 {
 // reactivate timer2
 porta.MakeAltFunction(2, 1, OSPEED_HIGH);
 timer2.Enable();
 timer2.ChangePWMDutyCycle(PA2_CHANNO, current_light_value);
 }
 }

void Slider1(uint16_t val)
 {
 current_light_value = val;
 // CHANGE PWM value
 timer2.ChangePWMDutyCycle(PA2_CHANNO, current_light_value);
 }

The code should be self-explanatory. The low-level access to timer2 and PORTA are done
using ImageCraft’s JumpStart API, which makes it easy to perform such functions. Direct IO
register access, or other support libraries such as ST’s CubeMX generated code etc., can also
be used.

Initial Setup
A single API call set up the Smart.IO environment:

extern void Connect_CB(void);
extern void Disconnect_CB(void);
…
SmartIO_Init(Connect_CB, Disconnect_CB);

Connect_CB is a callback function defined by the MCU firmware. It will be called when the
Smart.IO phone app connects to the Smart.IO module.

Disconnect_CB is a callback function defined by the MCU firmware. It will be called when the
Smart.IO phone app disconnects from the Smart.IO module.

These functions can be as basic as follow:

extern int connected;
extern int SPI_State;
…
void Connect_CB(void)
 {
 connected = 1;

 }

void Disconnect_CB(void)
 {
 SPI_State = SPI_IDLE;
 connected = 0;
 }

The main function is to set a global variable connected, indicating whether the phone app is
connected or not. These functions work in conjunction with the main loop described above.

Summary
This is essentially all the code you need to create this example app UI. Notice there is no need
to write wireless code, or to write the phone app yourself. All of that is taken care of by the
Smart.IO toolkit.

More advanced UI features can be added. For example, the sample UI shows UI controls for
allowing the end user to input auto on/off times based on weekday and weekend schedules.
Implementing this is left as an exercise to the reader.

UI DESIGN

GUI Slice
To simplify building a UI that works for all phone devices with varying resolution and across two
different types of OS (iOS and Android) with minimal effort from the firmware engineers, the
Smart.IO UI toolkit uses the concept of GUI Slices.

A GUI slice, or slice 9, contains a UI element, plus optionally an informative icon and a
descriptive text. For example, this is a screencap of three GUI slices:

Figure 12 Example with 3 GUI Slices

In vertical order:

1. An on/off button slice with a “power” icon and a label of “Fan Power”.
2. An on/off button slice with a “horizontal on/off” icon and a label of “Manual Power”.
3. A slider slice, whereby the end user can “slide” the control in either direction.

Note that the two on/off buttons are grouped together. The code fragment that generates the
above looks like this:

// indentation here only to highlight primary GUI creation API
tHandle h1 = SmartIO_MakeOnOffButton(0, 0, 0, Button1);
 SmartIO_AddText(h1, "Fan Power");
 SmartIO_SetSliceIcon(h1, SMARTIO_ICON_POWER);
tHandle h2 = SmartIO_MakeOnOffButton(0, 0, 0, Button2);
 SmartIO_AddText(h2, "Manual Power");
 SmartIO_SetSliceIcon(h2, SMARTIO_ICON_H_ONOFF);
SmartIO_GroupObjects(0, h1, h2, 0);
tHandle h5 = SmartIO_MakeSlider(0, 0, 40, Slider1);

9 There is another type of slice, the freeform slice, which will be introduced later. As GUI slice is the
common case, so “slice” by itself always referred to a GUI slice.

The details of the functions will be explained later. GUI slices are laid out in the order they are
called. For example, in the code fragment above, the order of the SmartIO_Make... calls
correspond to the order of the UI elements on the page.

For cases where the firmware needs to have more precise placement control of GUI elements,
a Freeform Slice may be used. (See description in later section.)

Virtual Screen Sizes and Screen Orientation
To simplify UI programming, the UI only operates in portrait orientation. This and the use of GUI
slices and other Smart.IO features (e.g. built-in font support) allow a GUI to be created that
looks optimal regardless of the OS and screen resolution of the target device. However, in some
cases, it is important to have fine grain control regarding the placement of certain UI elements.

To address these issues, Smart.IO divides the screen into 320 virtual pixels wide, and maps the
virtual pixels into the target device screen width. The app calculates the ratio between physical
pixels to 320 virtual pixels and uses the same ratio to calculate the virtual pixel dimension of the
height of the screen.

The height is almost never a factor in the UI as layouts are done using GUI slices, spacer slices,
and the auto-balance command (the latter two are described later). The only instance where a
problem may occur is when the firmware creates too many GUI elements for a single page. In
that case, the app generates a vertical scroll bar for the user to navigate the full page. However,
it is recommend that the firmware engineers to avoid this condition for a better looking UI.

List of UI Controls
This is a summary of all the available UI controls. More detailed information are given in the
next section.

Input Elements

UI Element Description API Name

On/off button An on/off switch SmartIO_MakeOnOffButton

3-pos button A switch with 3 positions SmartIO_Make3PosButton

Incrementer Increment / decrement control SmartIO_MakeIncrementer

Slider Slider SmartIO_MakeSlider

Expandable
list

A collapsible list to select one item.
No more than 6 to 8 items should be
on the list.

SmartIO_MakeExpandableList

Picker A scrollable list to select one item.
For use when large number of items
are needed.

SmartIO_MakePicker

Multi-selector A single or double rows of typically 2
to 6 items.

SmartIO_MakeMultiSelector

Number
selector

Select a number with a low and high
range

SmartIO_MakeNumberSelector

Time selector Select a time in hours and minutes SmartIO_MakeTimeSelector

Calendar
selector

Select a calendar date SmartIO_MakeCalendarSelector

Weekday
Selector

Select a weekday (MON-SUN) SmartIO_MakeWeekdaySelector

OK button A single button. The label can be
modified.

SmartIO_MakeOK

Cancel/OK
button

Two button choice. The labels can
be modified.

SmartIO_MakeCancelOK

OK “Link”
button

Same as an :OK button” except that
the it is linked to another UI
element. See text below this table.

SmartIO_MakeOKLinkTo

Checkboxes A group of checkboxes where
multiple items can be selected.

SmartIO_MakeCheckboxes

Radio buttons A group of radio buttons where one
item can be selected.

SmartIO_MakeRadioButtons

Text entry A box where text can be entered. SmartIO_MakeTextEntry

Password
entry

Same as “text entry” except that
each character is replaced by * in
the display.

SmartIO_MakePasswordEntry

Number entry Same as “text entry” except that
only numbers are accepted.

SmartIO_MakeNumberEntry

Output Controls

UI Element Description API Name

Text Box Display text in a box with specified
width (in virtual pixels). Also allow
slice icon, slice label, and box
alignment.

SmartIO_MakeTextBox

Multiline Text Display text in a box that takes the
full width of the screen

SmartIO_MakeMultilineBox

Counter Display numeric digits in a bound
box

SmartIO_MakeCounter

Progress Bar Display progress (percentage) in a
bar

SmartIO_MakeProgressBar

Progress
Circle

Display progress (percentage) in a
circular “bar”

SmartIO_MakeProgressCircle

Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge

SmartIO_MakeHGauge

Vertical
Gauge

Display quantity (percentage) in a
vertical gauge

SmartIO_MakeVGauge

Semicircular
Gauge

Display quantity (percentage) in a
semicircular gauge

SmartIO_MakeSemiCircularGauge

Circular
Gauge

Display quantity (percentage) in a
circular gauge

SmartIO_MakeCircularGuage

Battery Level Display a battery icon with the
charge level (20% increment)

SmartIO_MakeBatteryLevel

RGB Led Display a “led” with on/off state,
and one of the RGB (Red Green
Blue) colors.

SmartIO_MakeRGBLed

Custom
Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge with custom
colors

SmartIO_MakeCustomHGauge

Custom
Vertical
Gauge

Display quantity (percentage) in a
vertical gauge with custom colors

SmartIO_MakeCustomVGauge

There are other static UI elements, system menu API, etc. These will be explained in details
later.

UI Elements

Input UI Elements
Before we look at the individual UI element, there is one auxiliary function we need to describe,
for adding list items.

Adding List Items
For a UI element that contains multiple items, the function SmartIO_AddListItem adds a list
item to the UI element. For example, after creating a checkboxes element (see below), the
firmware calls this function to create the individual checkboxes with their labels.

handle label

The handle of the UI element; e.g. return
value of the “Make” function PLUS one.

Labels of the list items, in order of calls

Applicable UI elements:

● Expandable list
● Picker
● Multi-Selector
● Checkboxes
● Radio buttons
● App menu

For example, to create a set of checkboxes with 5 items:

tHandle h = SmartIO_MakeCheckboxes(5, CheckboxesCB);
SmartIO_AddListItem(h+1, “Apple”);
SmartIO_AddListItem(h+1, “Pear”);
SmartIO_AddListItem(h+1, “Mango”);
SmartIO_AddListItem(h+1, “Prune”);
SmartIO_AddListItem(h+1, “Lychee”);

would create the following UI. As mentioned elsewhere, various SmartIO_Make… functions
create a GUI slice that contains a UI element. The “handle” that is returned is the handle for the
slice itself, and by design, handle+1 is the value for the handle of the UI element itself. Hence
the argument to SmartIO_AddListItem is h+1.

Figure 13 Creating a 5-Element Checkboxes

Now we can move on to the actual UI elements.

On/Off buttons
On/Off buttons allow the user to select an "on" or "off" position.

tHandle SmartIO_MakeOnOffButton
(uint16_t alignment, uint16_t variation, uint16_t initial_value,
 void (*callback)(uint16_t));

alignment variation initial_value callback

0: right align
1: left align

0, 1, 2, 3 0: off
1: on

Callback function.
Call with 0 or 1

return: handle value for the slice, handle+1 is the object ID of the UI element

These screens show the variations 0, 1, 2, and 3 in vertical order. Both right and left alignments
are shown. Later graphics will only show left alignment for brevity. For each set of two, the top
one denotes the off state, and the bottom one denotes the on state.

Figure 14 Right and Left Alignment

3-Position Button
A 3-Position buttons allows one of three positions to be selected.

tHandle Make3PosButton
(uint16_t alignment, uint16_t variation, uint16_t initial_value,
 void (*callback)(uint16_t));

alignment variation initial_value callback

0: right align
1: left align

0, 1, 2: red
3, 4, 5: green
6, 7, 8: blue

0: left
1: middle
2: right

Callback function.
Call with 0, 1 or 2

return: handle value for the slice, handle+1 is the object ID of the UI element

3-Position button comes in three different colors, each one has three variations in the shapes of
the bumps around the edges.

Figure 15 3-Position Buttons

Slider
A slider allows the end user to select a value between the minimum value (which is usually 0%)
and maximum (usually 100%).

tHandle MakeSlider
(uint16_t alignment, uint16_t variation, uint16_t initial_value,
 void (*callback)(uint16_t));

alignment variation initial_value callback

0: right align
1: left align

0: red
1: green
2: blue

0 to 100 Callback function.
Call with 0 to 100

return: handle value for the slice, handle+1 is the object ID of the UI element

Figure 16 Sliders

Incrementer
An incrementer displays a number and allows it to be incremented or decremented. The API
allows low and high limits to be set.

tHandle MakeIncrementer
(uint16_t alignment, uint16_t variation, uint16_t initial_value,
 void (*callback)(uint16_t));

alignment variation initial_value callback

0: right align
1: left align

0 to 5 with different fill
colors and outline
shapes. See
screencap.

0 to 0xFFFFu Callback function.
Call with 0 to
0xFFFFu

return: handle value for the slice, handle+1 is the object ID of the UI element

Variations 0 to 5 are shown in vertical order with different fill colors and box outline.

Figure 17 Incrementers

Expandable List
An expandable list allows no items or one item to be selected out of a list. It is recommended
that an expandable list should contain no more than 5 to 6 list items. A longer list should use a
“Picker” instead. Note that an expanded expandable list = no item is selected.

Use SmartIO_AddListItem to add entries to the list. Note: the first call to
SmartIO_AddListItem is to create a label for the entire list and is not part of the nentries
count. For example, in the screencaps below, “Select A Fruit” is the label for the list.
Expandable list is the only UI with list items that has this label attribute.

tHandle SmartIO_MakeExpandableList
(uint16_t alignment, uint16_t nentries, void (*callback)(uint16_t));

alignment nentries callback

0: right align
1: left align

Number of entries Callback function. Call with
0: no item is selected
1-nentries: selected item

return: handle value for the slice, handle+1 is the object ID of the UI element

The left image is an expandable list (with “Select A Fruit” as its label) with no item selected. The
right image is the same list with one item selected.

Figure 18 Expandable List: Unselected and Selected States

Picker
A picker is similar to an expandable list, except that the selection and presentation are different.
The initial display is the selected or default element in a box with a drop down arrow next to it.
When tapped, the list of elements is presented in a scrollable list. Note that while the initial state
is no item is selected, once an item is selected, you cannot “select” no item, unlike an
expandable list.

Use SmartIO_AddListItem to add entries to the list.

tHandle SmartIO_MakePicker
(uint16_t alignment, uint16_t nentries, void (*callback)(uint16_t));

alignment nentries callback

0: right align Number of entries Callback function. Call with

1: left align 1-nentries: selected item

return: handle value for the slice, handle+1 is the object ID of the UI element

In the following, the left image is the unexpanded state of a picker. On the right is what the UI
looks like when the picker is touched: a scrollable list shows up at the bottom allowing the app
user to scroll and select an item.

Initially, the list can have no item selected, but once a selection is made, there is no provision to
unselect all items (unless the firmware specifically adds a “-none-” item, which is still not quite
the same).

Figure 19 Picker: Tap to Open Up the List of Items

Multi-Selector
A multi-selector is for a selection list of 2 to 6 items. The API includes an option to specify
whether multiple items may be selected at a time, or whether only a single item may be
selected.

Since multiple items may be selected, the argument to the callback is a 16-bit bitmask where bit
0 (LSB, least significant bit) represents whether item one is selected, and bit 1 (immediate left of
bit 0), represents whether item two is selected, etc. For example, the bit mask 0x21 means that
both item one and item six are selected.

Use SmartIO_AddListItem to add entries to the list.

tHandle SmartIO_MakeMultiSelector
(uint16_t alignment, uint16_t nentries, uint16_t isSingleSelectOnly,
 void (*callback)(uint16_t));

alignment nentries isSingleSelectOnl
y

callback

0: right align
1: left align

Number of entries 0: allows multiple
items to be selected
1: allows only one
item to be selected

Callback function.
Call with
1-nentries: selected
item

return: handle value for the slice, handle+1 is the object ID of the UI element

In the screencap below, the top selector allows multiple items to be selected, whereas the
bottom selector only allows a single item to be selected. The left image shows two multi-
selectors in their unselected states. On the right, some items have been selected. Although not
obvious, the second control only allows a single selection, so only one item can be selected.
The app user can deselect an item by tapping it again so it is possible that no item is selected in
a picker. The callback function will be called whenever the selection changes.

Figure 20 Multi-Selectors: Unselected and Selected States

Number Selector
A number selector is a special kind of picker that displays a range of numbers. The low and high
values of the range can be specified

tHandle SmartIO_MakeNumberSelector
(uint16_t alignment, uint16_t default_val, uint16_t low, uint16_t high,
 void (*callback)(uint32_t));

alignment default_val low high callback

0: right align
1: left align

The initial value
to display

The lower bound
of selectable
numbers

The upper
bound of
selectable
numbers

Callback
function. Call
with the selected
number

return: handle value for the slice, handle+1 is the object ID of the UI element

Since a number selector is a special case of the picker, the left image shows the selector in an
unexpanded state. The right image shows what happens when the box is tapped: a scrollable
list is shown with the range of numbers.

Figure 21 Number Selector: Unexpanded and Expanded States

Time Selector
A time selector allows the time of day to be selected. The initial time is specified as a C string in
the form of “HH MM” in 24 hour format. Selected time is returned as a string in the same 24-
hour format. The function supports two variations: 0 means that the display time is in 12-hour
AM/PM format, and 1 means that the display time is in 24-hour format.

tHandle SmartIO_MakeTimeSelector
(uint16_t alignment, uint16_t display_24h, char *initial_value,
 void (*callback)(uint16_t hh, uint16_t mm));

alignment display_24h initial_value callback

0: right align
1: left align

0: display AM/PM
1: do not display
AM/PM

The initial time in
“HH:MM” 24-hour
format

Call with the selected
hours and minutes in
24-hour format

return: handle value for the slice, handle+1 is the object ID of the UI element

The left image shows 2 time selectors, the top one with AM/PM display and the bottom one in
24-hour display mode. When the entry box is touched, a time selection scrollable list is shown.

On iOS, currently times are selectable by 5-minute increments to make choice selection easier.
We could add an option to allow single minute increments if there is demand for such a feature.
Conversely, the Android app allows minute selection.

Figure 22 Time Selector: Tap to Select a Time Value

Analog Time Selector
An analog time selector displays an analog clock face, and allows a time to be selected by the
end user by dragging the hour or minute hands.

Note: all arguments to this function are exactly the same as SmartIO_TimeSelector; the only
difference is the UI visual which the functions create.

tHandle SmartIO_MakeAnalogTimeSelector
(uint16_t alignment, uint16_t display_24h, char *initial_value,
 void (*callback)(uint16_t hh, uint16_t mm));

alignment display_24h initial_value callback

0: right align
1: left align

0: display AM/PM
1: do not display
AM/PM

The initial time in
“HH:MM” 24-hour
format

Call with the selected
hours and minutes in
24-hour format

return: handle value for the slice, handle+1 is the object ID of the UI element

Figure 23 Analog Time Selector

Calendar Selector
A calendar selector displays a date in the form of “MTH/DD/YYYY”, and when tapped, displays
a full calendar. “MTH” is either a numeric value from 1 to 12 or a 3-letter month code.

tHandle SmartIO_MakeCalendarSelector
(uint16_t alignment, char *initial_value, void (*callback)(char *));

alignment initial_value callback

0: right align
1: left align

The initial date in “MTH DD
YYYY” C string format. MTH
can be a number 1 to 12, or
the 3-letter code for months,
e.g. JAN, FEB, and so on.
DD is a number from 1 to 31.

Callback function. Call with C
string in the form of “weekday
MTH DD YYYY” where all 4
fields are numbers.

ImageCraft provides a utility

Note that the native OS may
not support a calendar which
is far in the past or future.

function
SmartIO_ConvertCalendarD
ay to extract the return values
as needed.

return: handle value for the slice, handle+1 is the object ID of the UI element

The current date is in red and the selected date is in blue. The selected date is returned to the
firmware in “weekday month date year” format where “weekday” is one to seven (one being
Monday) and “month” is 1 to 12. You can tap to select a date and scroll to different months and
years.

Figure 24 Calendar Selector

Weekday Selector
A weekday selector displays a list of weekdays. Multiple days may be selected. This is a special
case of "checkboxes".

Since multiple days can be selected, a bitmask is used; bit 0 is Monday, bit 1 is Tuesday, etc.
For example, 0x5 is Wednesday and Monday.

tHandle SmartIO_MakeWeekdaySelector
(uint16_t alignment, uint16_t initial_value, void (*callback)(uint16_t));

alignment initial_value callback

0: right align
1: left align

Bitmask of initial_value. Callback function. Call with
Bitmask of selected days.

return: handle value for the slice, handle+1 is the object ID of the UI element

The left image shows an unexpanded weekday selector. When the box is touched, the selection
box pops up and zero or more days can be selected.

Figure 25 Unexpanded and Expanded Day Selector

OK Button
An “OK” button is a clickable box. The callback function is called whenever the box is tapped.

tHandle SmartIO_MakeOK
(uint16_t alignment, char *text, void (*callback)(uint16_t));

alignment text callback

0: right align
1: left align

Label for the box. If null, then
the word “OK” is used.

Callback function. Always call
with the value 1.

return: handle value for the slice, handle+1 is the object ID of the UI element

Figure 26 OK Button

OK_LINKTO Button
An OK_LINKTO button is exactly the same as an “OK” button, except that the function is called
with the handle of a Popup UI (see below). When tapped, the Popup UI is displayed
automatically.

For example, the firmware may create a popup informational page, and associate it with an
OK_LINKTO box. Whenever the box is tapped, the informational page will be shown, without
interaction from the embedded firmware. This reduces communication overhead between the
App and the embedded system, resulting in a more responsive user experience.

A callback function is still called in case the embedded firmware wishes to register such event.
For example, the OK button may be linked to a EULA (End User Legal Agreement) page and
the embedded firmware may note the fact that the app user has opened the page.

tHandle SmartIO_MakeOKLinkTo
(uint16_t alignment, tHandle popup_handle, char *text,
 void (*callback)(uint16_t));

alignment popup_handle text callback

0: right align
1: left align

Handle of the popup
UI to display when
tapped.

Label for the box. If
null, then the word
“OK” is used.

Callback function.
Always call with the
value 1.

return: handle value for the slice, handle+1 is the object ID of the UI element

CANCEL/OK Button
CANCEL/OK is similar to OK except that one of two choices can be made. To specify the labels
for both choices, use ‘|’ a divider, e.g. “Turn Left|Turn Right”.

tHandle SmartIO_MakeCancelOK

(uint16_t alignment, char *text, void (*callback)(uint16_t));

alignment text callback

0: right align
1: left align

Label for the box. If null, then
the words “CANCEL” and
“OK” are used.

Callback function.
1: OK is clicked
2: Cancel is clicked

Checkboxes
Checkboxes allow multiple items to be selected. Since multiple items may be selected, the
argument to the callback is a 16-bit bitmask where bit 0 (LSB, least significant bit) represents
whether item one is selected, and bit 1 represents whether item two is selected, etc. For
example, the bit mask 0x21 means that item one and item six have been selected.

Use SmartIO_AddListItem to add entries to the list.

tHandle SmartIO_MakeCheckboxes
(uint16_t alignment, uint16_t nentries, void (*callback)(uint16_t));

alignment nentries callback

0: right align
1: left align

Number of entries Callback function. Call with
bitmask of selected items.

return: handle value for the slice, handle+1 is the object ID of the UI element

The left image shows a list of checkboxes in the unselected state. The right image shows three
items which have been selected.

Figure 27 Checkboxes: Unselected and Selected States

Radio Buttons
Radio buttons allow one of many items to be selected. Once any item has been selected, then
one item will always be selected.

Use SmartIO_AddListItem to add entries to the list.

tHandle SmartIO_MakeRadioButtons
(uint16_t alignment, uint16_t nentries, void (*callback)(uint16_t));

alignment nentries callback

0: right align
1: left align

Number of entries Callback function. Call with
1..nentries of the selected
item.

return: handle value for the slice, handle+1 is the object ID of the UI element

The left image shows a set of radio buttons. The right image shows that one item has been
selected.

Figure 28 Radio Buttons: Unselected and Selected States

Text Entry
A text entry field is for entering a line of text. The input is sent to the callback function when the
app user taps “Done” on the virtual keyboard (see below).

tHandle SmartIO_MakeTextEntry
(uint16_t alignment, uint16_t isRoundCorners, uint16_t nlines,
 void (*callback)(char *));

alignment isRoundCorners nlines callback

0: right align
1: left align

0: input box has sharp corners
1: input box has round corners

Number of
lines in the
entry box.
Default is
one.

Callback
function. Call
with entered
text.

return: handle value for the slice, handle+1 is the object ID of the UI element

The following image shows that you can type in the text entry with the device’s virtual keyboard.
Currently, the app user cannot enter more than one line of text in this field.

Figure 29 Text Entry Input Box

Password Entry
A password entry field is similar to text entry, except that each character is replaced by a ‘*’ or a
‘•’ after a slight delay as it is typed. The text is transferred to the Smart.IO using BLE protocol,
so it relies on the BLE encryption capability to protect the text.

An empty password entry box has the word “Password” grayed out in the box. You can change
it to any text you want by using the SmartIO_AddText 10 function.

tHandle SmartIO_MakePasswordEntry
(uint16_t alignment, void (*callback)(char *));

alignment callback

0: right align
1: left align

Callback function. Call with entered text.

return: handle value for the slice, handle+1 is the object ID of the UI element

Three password fields are shown here. The first one shows a hint that that the firmware can add
to the field using the SmartIO_AddText function. The second one shows the default text. The
third one shows the password as being entered with each character replaced by a dot (•).

Figure 30 Password Entry

10 Per usual, keep in mind that the handle value that you pass to the SmartIO_AddText function is the
returned value of the SmartIO_MakePasswordEntry PLUS one to access the UI handle value.

API INTRODUCTION

API Categories
The Smart.IO API is divided into these categories:

1. System / BLE initialization
2. Creating and managing UI elements
3. Updating the values of UI elements
4. Callback function mechanisms to accept end user input
5. System commands such as storing and retrieving UI values in Smart.IO EEPROM
6. Miscellaneous commands

The UI elements consist of:

1. Input elements such as on.off switches, sliders, text entry boxes, etc.
2. Output elements such as gauges, progress bars, text display, and even RGB LEDs, etc.
3. Static and other elements such as labels, informative icons, page navigation, etc.

Terminology
In this document, the following terms are used:

● API refers to the Smart.IO API
● App refers to the smartphone Smart.IO app running on either iOS or Android
● Custom App refers to a version of the Smart.IO app customized to a specific

firmware/product
● End User refers to the person using the phone app
● User refers to the embedded programmer
● Firmware refers to embedded firmware written by the user.

App Version
The Smart.IO app can work with any Smart.IO device by default. There are three basic versions
of the app:

1. Free generic version. This supports any Smart.IO-enabled product (unless explicitly
prevented by a specific product) with no optimization.

2. Paid (low cost) version. This includes caching support to eliminate some UI creation BLE
overhead.

3. Customized version. Embedded vendors may commission ImageCraft to customize a
version of the app that is specific to their product with their own logos, branding, etc.

Visit our page https://imagecraft.com/smartio/ for details.

https://imagecraft.com/smartio/

Error Conditions
The app detects error conditions and returns error statuses to the calling firmware; for example,
if the firmware specifies an incorrect handle value for an operation. When designing the UI, it is
up to the firmware engineers to ensure that the error conditions are checked, either by checking
the return values from the app, or by running the generated UI and checking its operations.
During development, the firmware may enable debug output through the UART port. (See
details later.)

Memory Blocks
There are three processor spaces in the system (the user MCU, the Smart.IO module, and the
smartphone itself), and pointers are not passed between the processor spaces as it makes no
sense. Thus, a string or blocks of text must be copied in its entirety between the processors
even though often the standard C notation of “char *” is used to denote a string. This applies to
function argument and function results.

The host interface layer allocates a block of host SRAM as transfer memory to store incoming
text data from the Smart.IO module to the host firmware. The size of the SRAM block is
#define’d as HOST_SRAM_POOL_SIZE in smartio_api.h (default is 512 bytes), which should
be sufficient for most uses in Smart.IO. You may modify this value, up to a maximum value of
4K bytes (and rebuild the host interface layer) to suit your system’s requirements. This value
must also be sent to the Smart.IO firmware as an argument to the initialization function. See the
SmartIO_Initialize API description.This block of memory is also used by the Smart.IO
EEPROM read function to hold the read-out values.

In addition, Smart.IO module uses an internal buffer of 4K bytes to store any text that is
transferred between the app and the host MCU. This is a hard limit that is independent of
HOST_SRAM_POOL_SIZE and cannot be changed by the firmware.

UI Cache
Since the Smart.IO app is generic in nature, the specific UI must be built by the firmware issuing
Smart.IO API function calls. Having a great-looking UI is important, but not if there is a lag for
the UI to show up! Also, using Bluetooth technology means that the device and the phone must
be paired, adding to the initial response time.

To address the issue with UI construction overhead, the paid and customized version of the
Smart.IO app caches the UI creation instructions, so that after the first run, BLE overhead is
significantly reduced in subsequent runs.

The customized app also allows transparent pairing of the app to a specific product, so that the
pairing overhead can be eliminated as well.

Local Storage
Currently, Smart.IO does not (yet) allow storage and accessing data “on the cloud” 11, and as
multiple phone devices may be used to access the embedded product, the firmware should
store the UI element values (e.g. the state of an on/off switch) in local storage so it can update
the UI element properly at startup. In the case that host hardware does not have persistent data
storage, the Smart.IO contains a 2K-byte EEPROM that may be used by the firmware for this
purpose. (The API is described later.)

API Dataflow
When the embedded firmware calls a Smart.IO API function, the behavior is as if the firmware
has made a regular function call: the command is carried out, and some point later the function
returns a result.

Internally, the host interface layer transfers the command to the Smart.IO module via the SPI
interface. After some massaging, the command is transferred to the phone app via the BLE
interface. After running the command, the phone app returns the result of executing the
command to the Smart.IO module (again via the BLE interface). The Smart.IO firmware
transfers the result to the host interface layer, which returns the result to the firmware call.

Firmware calls an API function
Firmware → (Smart.IO API) → SPI → Smart.IO firmware → (BLE) → App

The App (eventually) returns a result
App → (BLE) → Smart.IO firmware → SPI → (host interface layer) → Firmware

API calls are blocking; i.e. from the firmware point of view, it is just making a function call that
returns a result. The SPI and BLE transfer overhead, and the time that the app needs to
execute the command, are transparent to the firmware.

Callback Functions
Callback functions are used to receive new values from input UI elements. When the firmware
creates an input element, it provides the address of a function that the host interface layer will
invoke when the end user interacts with that UI element. A callback function accepts either an
integer or a string as its parameter, depending on the UI element.

By necessity, a callback function is called from inside an interrupt handler (which is a part of the
host interface layer). Therefore, to minimize disruption to the firmware execution, either the
callback functions should return as soon as possible, or the firmware should be designed to use

11 “Cloud access” involves strong security measures. Smart.IO will be further developed with robust
security in mind for Cloud access in future releases.

an interrupt-driven execution model. This is a standard problem with dealing with interrupt
driven code in firmware. Typically, a callback function that needs to run many instructions sets a
global flag that is picked up by the normal execution flow later.

While the end user may modify an input element at any time, the Smart.IO firmware and the
host interface layer are written such that callback functions are not called during the execution
of an API call. The Smart.IO firmware stores up to a maximum of (16) callback invocations in its
internal memory. The callback functions are invoked in the order in which they arrive.

While there is no mechanism for a callback function to indicate to the Smart.IO firmware that it is
finished processing, callback functions are invoked on the host MCU side by interrupts. As most
MCUs do not allow nested interrupts or the same interrupt to interrupt itself, this is not a
problem.

Data Types, Strings and Transfer Memory
Smart.IO API defines the following data types:

● tHandle is a 16-bit unsigned integer. When the firmware creates a UI object, a handle to
the object is returned by the app so the object can be referenced later.

● tStatus is a 16-bit signed integer. Some API functions return status indicating success or
failure. In most cases, zero denotes success and non-zero denotes failure. Depending
on the API, the status may have different failure values. (See smartio_api.h for details.)

● label is a string, e.g. “char *”

The “native” argument type is a 16-bit unsigned integer (uint16_t) as that can hold most values
in the system. Using 16 bits versus 32 bits reduces unnecessary transfer overhead over the SPI
and BLE. This also makes it friendlier to 8-bit embedded systems, such as the ones using the
Atmel AVR MCU.

32-bit integers are used on occasion; for example, the “color” argument (e.g. font color) is a 32-
bit value.

API Function Descriptions

As the API is evolving, no attempt is made here to fully document all the functions in detail. For
up-to-date details, please refer to the smartio_api.h header file in the latest software host
interface layer distribution.

Initialization Function
The firmware must call this function prior to any other Smart.IO API calls.

tStatus SmartIO_Initialize(
void (*connect_callback)(void),
void (*disconnect_callback)(void),
);

connect_callback: this is the firmware function to call when a connection is
established between Smart.IO and the phone app. The firmware should not make any
Smart.IO API calls unless the systems are connected.

disconnect_callback: the firmware function to call when a connection is dropped,
which could be due to the devices being too far apart, or abnormal operations. Invoking
this callback function should cause the firmware to reset the state of all UI related
functions.

After the initialization call, the firmware must create a new page before creating any UI
elements.

Page Management
UI elements are organized into pages. All UI creation commands operate on “current page”, and
the firmware can switch pages programmatically.

The end user may navigate to different pages using the native OS page navigation mechanism
(e.g. on iOS, by swiping right or left), unless navigation is disabled by the firmware.

Command API Name

Create a new page and set it as the current page SmartIO_MakePage

Set the current page SmartIO_SetCurrentPage

Set the page title SmartIO_PageTitle

Display the specified page as the current page
and disable user page navigation

SmartIO_LockPage

Unlock page and allow user page navigation SmartIO_UnlockPage

Input UI Elements
Input elements comprise the largest group of UI elements in the Smart.IO API. Most elements
have variations (different colors or shapes). (See Appendix for full details with graphics for all
the variations.) These elements accept input from the end user. The input values are passed to
the firmware via the callback mechanism. The general formats are:

// elements that have alignment, variation, and initial value
tHandle SmartIO_MakeXXX(

uint16_t alignment,
uint16_t variation,
uint16_t initial_value,
void (*callback)());

// elements that contain N entries (e.g. Picker, Expandable List)
tHandle SmartIO_MakeYYY(

uint16_t nentries,
void (*callback)());

The following input elements are provided:

UI Element Description API Name

On/off button An on/off switch SmartIO_MakeOnOffButton

3-pos button A switch with 3 positions SmartIO_Make3PosButton

Incrementer Increment / decrement control SmartIO_MakeIncrementer

Slider Slider SmartIO_MakeSlider

Expandable
list

A collapsible list to select one item.
No more than 6 to 8 items should be
on the list.

SmartIO_MakeExpandableList

Picker A scrollable list to select one item.
For use when large number of items
are needed.

SmartIO_MakePicker

Multi-selector A single or double rows of typically 2
to 6 items.

SmartIO_MakeMultiSelector

Number
selector

Select a number with a low and high
range

SmartIO_MakeNumberSelector

Time selector Select a time in hours and minutes SmartIO_MakeTimeSelector

Calendar Select a calendar date SmartIO_MakeCalendarSelector

selector

Weekday
Selector

Select a weekday (MON-SUN) SmartIO_MakeWeekdaySelector

OK button A single button. The label can be
modified.

SmartIO_MakeOK

Cancel/OK
button

Two button choice. The labels can
be modified.

SmartIO_MakeCancelOK

OK “Link”
button

Same as an :OK button” except that
the it is linked to another UI
element. See text below this table.

SmartIO_MakeOKLinkTo

Checkboxes A group of checkboxes where
multiple items can be selected.

SmartIO_MakeCheckboxes

Radio buttons A group of radio buttons where one
item can be selected.

SmartIO_MakeRadioButtons

Text entry A box where text can be entered. SmartIO_MakeTextEntry

Password
entry

Same as “text entry” except that
each character is replaced by * in
the display.

SmartIO_MakePasswordEntry

Number entry Same as “text entry” except that
only numbers are accepted.

SmartIO_MakeNumberEntry

An OK/Cancel button is usually used to elicit a response from the end user. For example, to
prompt the end user to decide if they want to read the instructions:

{{ screen cap }}

[Show Instructions? [OK]]

If the end user taps on the OK button, the firmware is notified via the callback function. The
firmware then can display a POPUP display (see later description) showing the instructions.

However, in cases like this, the firmware’s participation is not really necessary, and the back
and forth communication adds overhead to the UI performance. The “OK Link button” UI
element addresses this issue. Using this feature, the firmware first creates a POPUP element
with the instruction text. Then the firmware creates the “OKLinkTo” element specifying the
handle of the POPUP element as one of its arguments. Once done, the app then handles the
end user interaction directly without involving the firmware.

Output UI Elements
These elements allow the firmware to display information or data to the end users. Customized
versions of the app may use customized images for gauges.

UI Element Description API Name

Text Box Display text in a box with specified
width (in virtual pixels). Also allow
slice icon, slice label, and box
alignment.

SmartIO_MakeTextBox

Multiline Text Display text in a box that takes the
full width of the screen

SmartIO_MakeMultilineBox

Counter Display numeric digits in a bound
box

SmartIO_MakeCounter

Progress Bar Display progress (percentage) in a
bar

SmartIO_MakeProgressBar

Progress
Circle

Display progress (percentage) in a
circular “bar”

SmartIO_MakeProgressCircle

Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge

SmartIO_MakeHGauge

Vertical
Gauge

Display quantity (percentage) in a
vertical gauge

SmartIO_MakeVGauge

Semicircular
Gauge

Display quantity (percentage) in a
semicircular gauge

SmartIO_MakeSemiCircularGauge

Circular
Gauge

Display quantity (percentage) in a
circular gauge

SmartIO_MakeCircularGuage

Battery Level Display a battery icon with the
charge level (20% increment)

SmartIO_MakeBatteryLevel

RGB Led Display a “led” with on/off state,
and one of the RGB (Red Green
Blue) colors.

SmartIO_MakeRGBLed

Custom
Horizontal
Gauge

Display quantity (percentage) in a
horizontal gauge with custom
colors

SmartIO_MakeCustomHGauge

Custom
Vertical
Gauge

Display quantity (percentage) in a
vertical gauge with custom colors

SmartIO_MakeCustomVGauge

More advanced output elements such as charts, graphs and tables will be supported in a later
release.

Auto Layout and Groups
To accomplish the goal of optimal-looking UI on all target devices, Smart.IO includes these
features in addition to GUI slices: spacer slices, the auto-balance command, and the grouping
command.

Command API Name

Add a spacer slice SmartIO_SpacerSlice

Auto-Balance the page layout SmartIO_AutoBalance

Group GUI slices together SmartIO_GroupObjects

A spacer slice is a placeholder on the page. The firmware may create spacer slices anywhere
on the page just as it would in creating a GU slice. When the function SmartIO_AutoBalance is
called, the app calculates the vertical empty space not used by the GUI slices (and freeform
slices, see later) and divides the amount of free space by the number of spacer slices on the
page. It then make each spacer slice take up that amount of vertical space. Thus, if there is one
or more spacer slices between two GUI slices, an empty space is created in proportion to the
number of spacer slices in-between.

Although not apparent, there is one spacer slice between the second on/off button and the slider
button, and two spacer slices between the slider and the 3-pos switch. When created initially,
they do not take up any space at all.

When the auto-balance command is executed, the result looks like this:

Figure 31 UI with Spacer Slices: Before and After Auto-Balance

The empty space is evenly distributed to the spacer slices. In this way, auto-balance ensures
that the UI page occupies the full height of the device display 12 and allows the firmware to
control the amount of empty space between the UI elements.

To further enhance the look and feel, GUI slices can be grouped together using the
SmartIO_GroupObjects call. Up to eight object handles can be specified at once, and any
objects adjacent to each other that are on the list will be grouped together with a round corner
group box:

12 It is of course acceptable to create empty space at the bottom of the page by adding
SmartIO_SpacerSlice(s) as the last UI elements(s) of the page, before invoking the auto-
balance command.

Figure 32 Example of Object Grouping

In the example above, the two on/off switches are grouped together. You can specify multiple
groups with a single call, and the app is smart enough that it will only group adjacent slices
together.

It is acceptable for a group to have just a single slice. Grouping is for visual purposes only, and
the objects within a group are not tied in other ways.

Enable-If Command
Another feature to make an easy-to-use UI is the Enable-If command. The command allows a
group of UI elements to be enabled or disabled depending on the value or state of a parent UI
element. A UI element that is disabled will be dimmed.

The “enable-state” of the dependent UI elements is handled by the app itself with no action from
the firmware needed, thus making a more responsive UI.

Up to eight dependent UI handles can be specified at once. Multiple calls can be made to the
same controlling parent if needed. It is an error to have a direct or indirect recursive enable-if
relation.

The valid parent UI elements are:

UI Element Dependents Are Enabled If...

On/Off Button Switch is On

Expandable List At least one item is selected

Picker At least one item is selected

Number Selector A number is selected

Weekday Selector A weekday is selected

Time Selector A time is selected

Multi-Selector At least one item is selected

Checkboxes At least one item is checked

Radio Buttons An item is selected

Text Entry Any text is entered

Number Entry Any number is entered

Password Entry Any text is entered

Update Functions
Update functions are used to set the values of either input or output elements. You can usually
specify an element’s initial value in the object creation call (various SmartIO_Make… functions).
These functions allow the firmware to modify them afterward.

Generally for input elements, the firmware should store the current states of the elements
whenever they are changed in persistent memory, and then restore them during the next run of
the app UI.

Command API Name

Add text to an object. This can be used for adding
a slice label, or text to a text box, etc.

SmartIO_Addtext

Clear text field SmartIO_ClearText

Update an object with one integer attribute SmartIO_UpdateIntValue

Update an object with two integer attributes SmartIO_UpdateIntValue2

Update an object with three integer attributes SmartIO_UpdateIntValue3

Update an object with a string attribute SmartIO_UpdateString

Synonyms exist to give specific names to update different objects.

Real Name Synonyms

SmartIO_UpdateIntValue SmartIO_UpdateOnOffButton
SmartIO_Update3PosButton
SmartIO_UpdateIncrementer
SmartIO_UpdateSlider
SmartIO_UpdateExpandableList
SmartIO_UpdatePicker
SmartIO_UpdateMultiSelector
SmartIO_UpdateNumberSelector
SmartIO_UpdateCheckboxes
SmartIO_UpdateRadioButtons
SmartIO_UpdateCounter
SmartIO_UpdateProgressBar
SmartIO_UpdateProgressCircle
SmartIO_UpdateHGauge
SmartIO_UpdateVGauge
SmartIO_UpdateSemiCircularGauge
SmartIO_UpdateCircularGauge
SmartIO_UpdateCustomHGauge
SmartIO_UpdateCustomVGauge
SmartIO_UpdateBatteryLevel

SmartIO_UpdateIntValue2 SmartIO_UpdateRGBLed

SmartIO_UpdateString SmartIO_UpdateTextBox
SmartIO_UpdateMultilineBox

Popups
A popup is for displaying a full page UI that takes the focus of the app. It is disabled by default,
and when enabled, it has a close [X] gadget on the upper right. When enabled, the end user can
dismiss the popup and returns to the regular app function by tapping on the close gadget.

Multiple popups elements can be linked. When linked, the bottom control displays a ← on the
left if there is a previous popup and a → on the right if there is a next popup. For example, a
long set of instructions can be broken up into multiple multiline text boxes with each one in a
popup. The end user can read the popups page by page, navigating back and forth if needed,
and close the popup display any time they choose.

The SmartIO_Popup... commands mirror the set of SmartIO_Make... commands for making
GUI slices, and have similar arguments except that the Popup commands do not have
alignment parameters. For example, SmartIO_PopupOnOffButton creates a popup with an
on/off button just like SmartIO_MakeOnOffButton creates a GUI slice with an on/off button.

Appending multiple popups to the same source popup (with different calls to
SmartIO_AppendPopup command) results in undefined behavior.

Command API Name

Create a popup SmartIO_PopupOnOffButton
SmartIO_Popup3PosButton
SmartIO_PopupIncrementer
SmartIO_PopupSlider
SmartIO_PopupPicker
SmartIO_PopupMultiSelector
SmartIO_PopupNumberSelector
SmartIO_PopupTimeSelector
SmartIO_PopupCalendarSelector
SmartIO_PopupWeekdaySelector
SmartIO_PopupCheckboxes
SmartIO_PopupRadioButtons
SmartIO_PopupTextEntry
SmartIO_PopupNumberEntry
SmartIO_PopupPasswordEntry
SmartIO_PopupCounter
SmartIO_PopupProgressBar
SmartIO_PopupProgressCircle
SmartIO_PopupHGauge
SmartIO_PopupVGauge
SmartIO_PopupSemiCircularGauge
SmartIO_PopupCircularGauge
SmartIO_PopupBatteryLevel
SmartIO_PopupRGBLed

SmartIO_PopupCustomHGauge
SmartIO_PopupCustomVGauge
SmartIO_PopupLabel
SmartIO_PopupTextBox
SmartIO_PopupMultilineBox

Append a popup to another SmartIO_AppendPopup

Freeform Slices
A freeform slice is a “holding area” where the firmware may place one or more UI elements with
fine grain placement control. When the firmware creates a freeform slice, it specifies the height
of the slice in a number of virtual pixels. The width in virtual pixels is fixed at 320. The firmware
must be careful not to make a freeform slice too high. Again, if all the UI slices do not fit into a
particular device height-wise, then the app will create a scrollbar.

Once a freeform slice is created, the firmware creates UI elements within the freeform slice by
specifying each object’s X and Y location, relative to the upper left corner of the freeform slice
13.

The SmartIO_FFS_... commands mirror the set of SmartIO_Make... commands for making
GUI slices, and have similar arguments except that the freeform commands do not have
alignment parameters and take location coordinates. For example, SmartIO_FFS_OnOffButton
creates an on/off button in a freeform slice just like SmartIO_MakeOnOffButton creates a GUI
slice with an on/off button.

Command API Name

Create a freeform slice SmartIO_MakeFreeformSlice

Create a popup SmartIO_FFS_OnOffButton
SmartIO_FFS_3PosButton
SmartIO_FFS_Incrementer
SmartIO_FFS_Slider
SmartIO_FFS_Picker
SmartIO_FFS_MultiSelector
SmartIO_FFS_NumberSelector
SmartIO_FFS_TimeSelector
SmartIO_FFS_CalendarSelector
SmartIO_FFS_WeekdaySelector
SmartIO_FFS_Checkboxes
SmartIO_FFS_RadioButtons
SmartIO_FFS_TextEntry
SmartIO_FFS_NumberEntry
SmartIO_FFS_PasswordEntry
SmartIO_FFS_Counter
SmartIO_FFS_ProgressBar
SmartIO_FFS_ProgressCircle
SmartIO_FFS_HGauge
SmartIO_FFS_VGauge
SmartIO_FFS_SemiCircularGauge
SmartIO_FFS_CircularGauge

13 E.g. the upper left corner of a freeform slice has the coordinate 0,0. Across right (width) is the X
coordinate and down (height) is the Y coordinate.

SmartIO_FFS_BatteryLevel
SmartIO_FFS_RGBLed
SmartIO_FFS_CustomHGauge
SmartIO_FFS_CustomVGauge
SmartIO_FFS_Label
SmartIO_FFS_TextBox
SmartIO_FFS_MultilineBox

As the exact size of a UI element is defined by the app and is not known, the embedded
engineers should ensure that the X,Y coordinate chosen for a UI element does not conflict with
another UI element. This must be done by running the generated UI and tweaking the API calls
as needed.

Popup Alerts
Alerts are for displaying critical information to the end users. They are predefined by the
Smart.IO app but do have a few variations for the firmware to choose from.

Command API Name

Display an alert SmartIO_PopupAlert

They are not persistent UI elements, and are generated on-the-fly by the firmware. Once
displayed, they disallow further end user interaction except for dismissing the alert.

UI Element States
A UI element has two attributes: enable / disable, and visible (show) vs. invisible (hide).

● Enable implies show
● Show does not imply enable

● Disable does not imply hide
● Hide implies disable

Command API Name

Enable an object SmartIO_EnableObject

Disable an object SmartIO_DisableObject

Show an object SmartIO_ShowObject

Hide an object SmartIO_HideObject

Note: disabling or hiding an object does not remove the space it occupies on the screen.

Miscellaneous UI Functions
Deleting a GUI slice, freeform slice, popup, or a page will delete all UI elements contained
within. Deleting the UI element that are part of a GUI slice (which only contains a single UI
element) also deletes the GUI slice.

Some UI elements have fill colors, and the firmware can change it using the 32-bit web color
value.

Command API Name

Delete an object SmartIO_Delete

Set the fill color SmartIO_FillColor

Fonts
These are the font characteristics. By default, sans serif medium size font is used.

iOS (iPhone)

Font name Type Sizes

HelveticaNeue Sans Serif Small: 12
Medium (normal): 16
Large:20

Helvetica Serif Small: 12
Medium (normal): 16
Large:20

iOS (iPad)

Font name Type Sizes

HelveticaNeue Sans Serif Small:15
Medium (normal): 19
Large: 23

Helvetica Serif Small:15
Medium (normal): 19
Large: 23

Android

Roboto Sans Serif Small:14
Medium (normal):18
Large:22

Noto Serif Serif Small:14
Medium (normal):18
Large:22

The customized app may use special fonts.

Text Control Codes
Individual text strings may contain control codes that change the text attributes. Control codes
are prefixed with the % character:

Control Characters Effect

%% Output a single %

%B Bold the following characters

%b Un-bold

%l (capital letter i) Italicize the following characters

%i Un-italicize

%S Use serif font for the following characters

%s Use sans serif font

%0 Use small font size

%1 Use medium/normal font size

%2 Use large font size

%L Use superscript

%L Use subscript

%n Use normal script

%d Reset all attributes to default, equivalent to %b%i%s%1%n

These control codes work with respect to the app default of sans serif medium size font. That is,
the font attributes specified in the SmartIO_Initialize call have no effect.

For example, “Hello %BWorld%b!%IIam Alive%i!!” displays as

Hello World!I Am Alive!!

Color Values
Color values are 24-bit web color codes, encoding three 8-bit RGB (Red, Green, Blue) values.
Since there is no 24-bit data type, a full 32-bit value is used.

This web page (and a web search will show others if this site is unavailable) is a good resource
for web color codes: http://htmlcolorcodes.com/

http://htmlcolorcodes.com/

Miscellaneous

App Menu
On the top right of the display is a gear icon representing the System Menu, with
commands/options specific to the Smart.IO app itself. The user UI generated by the firmware,
may have its own set of menus as well. On iOS devices, this icon is displayed as 3 horizontal
bars on the upper left corner.

The firmware creates the app menu by using the SmartIO_AddMenu function. Once created, it
can call SmartIO_AddListItem as many times as it wishes (to the limit of the screen
dimensions) to add menu entries. When the app user touches a menu entry, the callback
function will be called.

tHandle SmartIO_AddMenu(char *label, void (*callback)(uint16_t))

label callback

0/null: no menu entry is created
text: create first menu entry with “text”

Callback function. Call with the index of the
menu entry that is tapped.
1: first entry was tapped
2: second entry was tapped
...

return: handle value for the menu object

(The green blob is an artifact of a green UI element behind the "translucent" app menu display.)

App Title
The firmware may change the app title by using the SmartIO_AppTitle function. It may call this
any time, and the effect is immediate. The default title is “Smart I/O”. An app title is limited to 18
characters, with a shorter title preferred, as it may otherwise not fit cleanly within some device’s
display.

In a customized version of the app, custom graphical icons may be used in app title (and other
places).

tStatus SmartIO_AppTitle(char *title)

title

Title of the App

This example shows the firmware changing the app title to “Smart Wall Plug”.

Page Title
Each page may have its own title too. They are displayed in smaller font than the app title. The
length is also limited to 18 characters, and should preferably be shorter in most cases to better
fit the display.

tStatus SmartIO_PageTitle(tHandle page_id, char *title)

page_id title

Handle of the page object Title text

This example shows the page title changed to “Page 3 of 4000” and the use of an OK button
labeled "continue".

Figure 33 Example of Page Title

EEPROM Commands
If the host MCU does not have persistent storage such as its own EEPROM, the Smart.IO
module’s 2K bytes EEPROM can be used by the firmware. This is useful for storing and
retrieving the values of the UI elements so that the firmware can have an accurate display
during different runs of the app, even if the app is run on different machines (obviously not
concurrently).

Command API Name

Read bytes from EEPROM SmartIO_ReadEEPROM

Write bytes to EEPROM SmartIO_WriteEEPROM

These functions take the byte address location in the EEPROM and a buffer as arguments to
the functions. Reading from EEPROM always deposits the result in the Transfer Memory
described in the early part of this document. The firmware must not try to read a block more
than HOST_SRAM_POOL_SIZE bytes in a single call, or an error will result.

System Commands
The firmware invokes SmartIO_StopResume to “pause” the app, which is useful if the firmware
or the embedded hardware needs to perform a long running task and it cannot allow UI
interaction. The app displays a spinning circle indicating that it is busy, and no end user
interaction is allowed. The app resumes when the firmware calls this function again, or when it
makes any UI Smart.IO API call.

Under catastrophic circumstances, the firmware can reset the app to its original state using
SmartIO_Reset. The BLE connection is kept alive, but the GUI will be reset.

Command API Name

“Pause” the app SmartIO_StopResume

Reset the app SmartIO_Reset

Miscellaneous System Commands
The Smart.IO module has 3 (RGB) physical LEDs on board and can be controlled by the
firmware individually. It also has a hardware random number generator, and each Smart.IO

module is guarantee to have a unique ID that is different from any other Smart.IO module. The
set of functions below accesses these features.

Finally, for debugging Smart.IO operations, the firmware can enable debug output on the UART
port. The UART runs at 9600 BAUD and you can use a FTDI serial to USB cable to send the
output to a virtual COM port.

Command API Name

Set the hardware LED SmartIO_SetLED

Clear the hardware LED SmartIO_ClearLED

Toggle the hardware LED SmartIO_ToggleLED

Generate a random number SmartIO_GenerateRandomNumber

Obtain a unique integer ID SmartIO_GetUniqueID

Enable debug output in the UART SmartIO_UseDebugUART

Phone Commands
These functions allow the firmware to access information from the phone.

Command API Name

Obtain clock time SmartIO_GetPhoneTime

Obtain GPS coordinate (not yet implemented) SmartIO_GetPhoneGPS

APPENDIX

Appendix A: Using Smart.IO EEPROM for UI State Storage
To save and restore the UI state, you create a C structure and define fields to correspond to the
UI controls that you want to store, e.g.

typedef struct {
 tHandle on_off_button;
 tHandle slider1_value;
} UI_STATE;

UI_STATE current_state;

Then, whenever the values are changed, they are stored into the global variable
current_state:

void Button1(uint16_t val)
 {
 … // previous content
 current_state.on_off_button = val;
 }

void Slider1(uint16_t val)
 {
 … // previous content
 current_state.slider1_value = val;
 }

The Smart.IO read and write EEPROM functions take the following function signatures:

unsigned char *SmartIO_ReadEEPROM(uint16_t address, uint16_t length);
tStatus SmartIO_WriteEEPROM(uint16_t address, uint16_t length,
 unsigned char *buffer);

The read function takes an address, reads “length” bytes from the EEPROM starting at
address, and returns the buffer. The write function takes a similar argument and also a pointer
to the buffer (e.g. the address of a UI_STATE structure), and writes the content of the buffer to
the EEPROM.

The MCU firmware must manage the address range used. If there is no other use for the
EEPROM, you may store the UI_STATE starting at address 0.

The current version of the Smart.IO module contains 2K bytes of internal EEPROM. Future
versions may include larger amounts of EEPROM. Note that the last 32 bytes is reserved for
Smart.IO use, and is not accessible by the firmware MCU.

Saving and restoring the UI state then can be written as follows:

void SaveUIState(void)
 {
 SmartIO_WriteEEPROM(UI_STATE_ADDRESS, sizeof (current_state),
 (unsigned char *)¤t_state);
 }

void RestoreUIState(void)
 {
 memcpy((unsigned char *)¤t_state,
 SmartIO_ReadEEPROM(UI_STATE_ADDRESS, sizeof (current_state)),
 sizeof (current_state));

 SmartIO_UpdateOnOffButton(on_off_button_handle,
 current_state.on_off_button);
 SmartIO_UpdateSlider(slider1_handle, current_state.slider1_value);
 }

The handles to the on/off button and the slider can be stored in global variables after you create
them, or they can be stored in the UI_STATE structure itself. The former is preferred since
accessing the EEPROM takes time and you want to minimize the size of the UI_STATE
structure as much as possible.

Appendix B: Smart.IO Module Schematic
See here for full size PDF

https://imagecraft.com/pub/Docs/SmartIO/SmartIOMKII%20Schematic%20rev%20A.pdf

Appendix C: Smart.IO Arduino Shield Schematic
See here for full size PDF

https://imagecraft.com/pub/Docs/SmartIO/SmartIO%20Shield%20PCB%20Schematics%20Rev%20C.pdf

	OVERVIEW
	Introduction
	Firmware Driven UI

	Where to Find Information
	Overview of the Smart.IO System
	Customized App for Product Release
	Evaluating Smart.IO Using the Smart.IO Starter Kit
	ST-Nucleo Driver
	UI Demo
	Command Demo
	Setting up the terminal programs
	Startup operations
	Running the test program

	Modifying the test program

	INTEGRATING WITH SMART.IO
	Hardware Integration Guide
	Physical dimensions:
	Power Requirements
	Smart.IO Module Placement Recommendations
	5V System Compatibility
	2x6 0.1” Header

	Microcontroller Interface
	SPI
	Host IRQ
	Smart.IO RESET
	UART Pins
	Bootloader Mode
	JTAG pins

	Arduino Style Shield
	Arduino Shield Header Pinouts
	ST-Nucleo Boards with Arduino-style Headers
	AVR Arduino
	Arduino Shield JTAG Header Pinouts
	FTDI/USB Micro-USB Connector

	Software Integration Guide
	Smart.IO API

	Host Interface Layer Architecture
	Blocking API
	Interrupts

	Host Interface Layer Source Files
	Porting Tasks
	Hardware Initializations
	SPI Data Transfer
	Host IRQ Interrupt Handling
	Other Source Files in the Host Interface Layer

	Complete Data Flow of a Smart.IO API Call
	Smartphone App
	Some Sample Screens and Additional Features
	Caching - an In-App Purchase Option

	A Program Template
	Naming Conventions

	Example UI
	Main Loop
	Save and Restore UI State
	Creating the UI
	UI Callback Functions
	Initial Setup
	Summary

	UI DESIGN
	GUI Slice
	Virtual Screen Sizes and Screen Orientation
	List of UI Controls
	Input Elements
	Output Controls

	UI Elements
	Input UI Elements
	Adding List Items
	On/Off buttons
	3-Position Button
	Slider
	Incrementer
	Expandable List
	Picker
	Multi-Selector
	Number Selector
	Time Selector
	Analog Time Selector
	Calendar Selector
	Weekday Selector
	OK Button
	OK_LINKTO Button
	CANCEL/OK Button
	Checkboxes
	Radio Buttons
	Text Entry
	Password Entry

	API INTRODUCTION
	API Categories
	Terminology

	App Version
	Error Conditions
	Memory Blocks
	UI Cache
	Local Storage
	API Dataflow
	Callback Functions
	Data Types, Strings and Transfer Memory
	Initialization Function
	Page Management
	Input UI Elements
	Output UI Elements
	Auto Layout and Groups
	Enable-If Command
	Update Functions
	Popups
	Freeform Slices
	Popup Alerts
	UI Element States
	Miscellaneous UI Functions
	Fonts
	Text Control Codes
	Color Values
	Miscellaneous
	App Menu
	App Title
	Page Title

	EEPROM Commands
	System Commands
	Miscellaneous System Commands
	Phone Commands

	APPENDIX
	Appendix A: Using Smart.IO EEPROM for UI State Storage
	Appendix B: Smart.IO Module Schematic
	Appendix C: Smart.IO Arduino Shield Schematic

