
HC12compact
Hardware Version 1.0

User Manual

July 7 2008

Copyright (C)1997-2008 by
ELMICRO Computer GmbH & Co. KG
Hohe Str. 9-13 D-04107 Leipzig, Germany
Tel.: +49-(0)341-9104810
Fax: +49-(0)341-9104818
Email: leipzig@elmicro.com
Web: http://elmicro.com

This manual and the product described herein were designed
carefully by the manufacturer. We have made every effort to avoid
mistakes but we cannot guarantee that it is 100% free of errors.

The manufacturer's entire liability and your exclusive remedy shall
be, at the manufacturer's option, return of the price paid or repair or
replacement of the product. The manufacturer disclaims all other
warranties, either expressed or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpo-
se, with respect to the product including accompanying written material,
hardware, and firmware.

In no event shall the manufacturer or its supplier be liable for any
damages whatsoever (including, without limitation, damages for loss of
business profits, business interruption, loss of business information, or
other pecuniary loss) arising out of the use of or inability to use the
product, even if the manufacturer has been advised of the possibility of
such damages. The product is not designed, intended or authorized for
use in applications in which the failure of the product could create a
situation where personal injury or death may occur. Should you use the
product for any such unintended or unauthorized application, you shall
indemnify and hold the manufacturer and its suppliers harmless against
all claims, even if such claim alleges that the manufacturer was negli-
gent regarding the design or implementation of the product.

Product features and prices may change without notice.

All trademarks are property of their respective holders.

HC12compact

Contents

31Additional Information on the Web .
31Schematic Diagram .
29Initialization Example .
28About Operating Modes .
2811. Application Hints .

2710. Power Management .

24LCD-Interface .
22CAN-Controller .
229. Peripherals on the System Bus .

20D/A-Converter .
19A/D-Converter .
18Real Time Clock .
178. Peripherals on the SPI-Bus .

157. RS232 Interface .

14Flash-Programming .
12Addressing, Bank Switching .
11Memory Interface .
116. Memory .

105. Connectors .

8Solder Bridges .
7Jumpers .
74. Jumpers and Solder Bridges .

63. Parts Location Diagram .

52. Quick Start .

4Package Contents .
31. Overview .

HC12compact

1

37Monitor Commands .
36Memory Map .
35Interrupt Vectors .
34Autostart Function .
33Write Access .
32Notation .
32Introduction .
3212. Monitor Program TwinPEEKs .

HC12compact

2

1. Overview
HC12compact is an universal microcontroller module on the basis

of a Motorola MC68HC812A4 MCU.

In addition to the on-chip features of the MCU itself, the following
peripherals are available on the HC12compact:

w 512 KB Flash-Memory and 256 KB (optional: 1024 KB) RAM
w Real Time Clock (battery backed)
w Analog/Digital-Converter (12 bit, 11 channels)
w Digital/Analog-Converter (12 bit, 2 channels)
w CAN Controller
w RS232 interface driver
w beeper
w indicator LED

Key features of the HC12compact unit are:

w compact design
w low power consumption
w easy handling
w comprehensive software support available (Monitor, C-Compi-

ler, BDM-Debugger etc.)

HC12compact

3

Package Contents
The base version (stock code HC12CO/1) of HC12compact is

equipped as follows:

w Ready-to-use controller board with 256 KB RAM and 512 KB
Flash

w None of the options are populated (order RTC, ADC, DAC and
CAN seperately, but always together with the board)

w The header connectors at both edges of the board are not
mounted (so the user may solder them up- or downward, depen-
ding on the application)

w User Manual (this document) and software on CD-ROM
w TwinPEEKs Monitor Program, residing in the internal

EEPROM of the HC12
w Serial cable with Sub-D9 connector (PC side)

The fully equipped version (stock code HC12CO/FULL) includes
the following additional peripherals:

w Real Time Clock and LiMn battery
w A/D Converter (12 bits, 11 channels)
w D/A Converter (12 bits, 2 channels)
w CAN Controller SJA1000

HC12compact

4

2. Quick Start
As no one likes to read lengthy manuals, we will summarize the

most important things in the following section. If you need any additio-
nal information, please refer to the more detailed sections of this
manual.

Here is how you can start:

w First check the board for (mechanical) damages!
w Check the default jumper settings (see below). The HC12 must

start in Normal Single Chip Mode (JP1/2/3=L/L/H) in order to
activate its monitor program.

w Connect the single board computer via RS232 with your PC.
Use the flat ribbon cable supplied with the board. Pin 1 of the
header connector on the PCB goes to Pin 1 of the Sub-D9
connector on the PC side.

w On the PC, start a Terminal Program. An easy to use Terminal
Program is OC-Console, which is available at no charge from
our Website!

w Choose a baud rate of 19200Bd, 8N1, no protocol used.
w Connect the 5V power supply (must be stabilized!). Check

voltage and polarity before!

+5V GND

w Now the monitor software starts and sends a message. After the
prompt you may type in your commands.

HC12compact

5

3. Parts Location Diagram

Parts Location Diagram

HC12compact

6

4. Jumpers and Solder Bridges

Jumpers

Jumper Locations

HC12compact

7

1
2
3

256KB 1024KB

1
2
3

JP5: RAMTYPE

1
2

enabled disabled

1
2

JP7: PWRFAIL

1
2

enabled disabled

1
2

JP6: RTCIRQ

Reset Switch

1
2

JP4: RESET

1
2
3

1
2
3

JP2: MODB

L
H

JP3: BKGD

1
2
3

1
2
3

L
H

1
2
3

1
2
3

L
H

JP1: MODA

Special Normal Single ExpandedNarrow Wide

Solder Bridges

Locations of Solder Bridges (Solder Side)

HC12compact

8

OFlash Ready DetectionRY_FSH->PT3BR13

XPT2 drives beeperPT2->PiezoBR12

OPH3 drives beeperPH3->PiezoBR11

OADC End Of Conversion DetectionADC_EOC->PT1BR10

XADC VREF+ from IC11ADCRHBR9

XADC VREF- = GNDADCRLBR8

ODSR drives RXD1RXD1BR7

OTXD1 drives DTRTXD1BR6

OCAN Interrupt Detection/INT_CAN->PT0BR5

XDAC REFHA/B = REFOUT DACRHBR4

XDAC XA/B = GNDDACRLBR3

XHC12 VRH = VCCVRHBR2

XHC12 VDDA = VCCVDDABR1

*DescriptionFunctionPad

* Default settings: O=open X=closed

HC12compact

9

5. Connectors

HC12compact

10

1
2

3
4

5
6

7
8

9
10

D
S

R
R

T
S

C
T

S
R

I
n.

c.

D
C

D
R

X
D

T
X

D
D

T
R

G
N

D

ST3

RS232
1
2

3
4

5
6

G
N

D
/R

E
S

V
C

C

B
K

G
D

n.
c.

n.
c.

ST1

BDM12

1 2 3 4

V
C

C
G

N
D

P
W

R
_F

A
IL

P
W

R
_O

F
FST2

Power Supply

6. Memory

Memory Interface
In part 1 of the schematic diagram (provided seperately) is shown,

how the memory devices are connected to the system bus. The flash
memory IC2 (29F400 from AMD) has a capacity of 512 KB. Another
option is to mount a smaller device like the 29F100 with 128 KB which
is pin compatible to the 29F400.

Address and data lines of the flash memory go 1:1 to the system
bus. Since A0 of the HC12 address bus is not used (we have a 16 Bit
wide data bus!) the address bus lines used start with A1 but the flash
memory addresses still start with A0 (flash device operates in word
mode).

The flash memory can be selected via /CE and /OE. The /CE pin is
connected to a chip select line of the MCU (/CSP0). This chip select is
already active after reset in Expanded Mode. This is, /CSP0 goes low if
a memory access occurs between $8000 and $FFFF - providing, there is
no higher priorised resource such as the internal EEPROM.

/WE and /OE control the read or write direction. The output enable
signal is the negated R/W signal of the controller.

The RY/BY output may be used to detect the completion of a flash
write cycle. To utilize this signal the solder pad BR13 (on the solder
side of the PCB) must be closed. As a result Input Capture channel 3 of
the MCU can generate an interrupt as soon as the write (or erase) cycle
of the flash is finished.

There are also software means of detecting the status of the flash
memory chip (e.g. Toggle Bit Polling) which simplify the handling of
those memories drastically. For details see the data book from AMD.

For the RAM two 8 bit devices are used in this application. IC1
covers the upper half of the data bus, IC3 the lower half.

The chip select signal /CSD must be ORed with A0 and /LSTRB to
get two independent selects for the upper and lower half of the data bus.

HC12compact

11

If the MCU makes a byte access /LSTRB has always the opposite
level of A0. If an aligned word access occurs both A0 and /LSTRB are
low (=active). A misaligned word access is a special case which can
only occur during an access to the internal RAM, which can handle this
transparently by a special byte-swapping mechanism. External memory
accesses are always executed in an aligned mode.

Two types of RAM chips may be mounted on the HC12compact.
To select between the 128 KB type (256 KB total, default) and the 512
KB type (1 MB RAM, special option) the jumper JP5 must be placed in
the right position (see section Jumpers above)

Addressing, Bank Switching
The HC12 has a 64 KB linear addressing area. So it is possible to

use 2 byte addresses, which is very code efficient. In addition, the
HC812A4 has a bank switching hardware, which can handle up to 4
MB program memory and 1 MB data memory.

There are also special machine instructions which simplify the
usage of the paged memory. The CALL instruction works like a JSR
instruction, but it saves also the current program page on the stack. The
enhanced counterpart of RTS is RTC.

The program memory pages have a size of 16 KB and the program
memory window is located at $8000 - $CFFF. The selected program
page number is in the PPAGE register. This is an 8 bit register, so there
are 256 possible program memory pages.

The window for the paged data memory is between $7000 and
$7FFF (4 KB). Again, there are 256 combinations, selectable via the
DPAGE register. There are no specific instructions to deal with the data
memory.

There is another window, called Extra Window, with 1 KB page
size and (again) up to 256 pages. This window is not explicitly used on
the HC12compact.

For details about the whole memory paging mechanism please refer
to the data book "Technical Summary" from Motorola.

HC12compact

12

The following diagram shows the "default" memory map of the
:HC12compact:

Memory Map

The upper memory area ($8000 to $FFFF) can be used as program
memory space, it is provided by a Flash memory device of 128-512KB.
The microcontroller uses the highest 16 KB of this device to fill the
memory area between $C000 and $FFFF. The 16 KB below is the
Program Window. Any 16 KB memory page of the Flash device can be
mapped into this area by selecting a specific PPAGE register value.

The lower half of the memory address space ($0000 to $7FFF) is
filled with 32 KB of the external RAM (256 KB or 1 MB total size),
except there is a higher priorised internal resource. So the control
registers of the controller occupy $0000 to $01FF, followed by the chip

HC12compact

13

select space (to $03FF). From $0400 to $07FF there is a short block of
"nomal" external RAM. The internal RAM starts at $0800 (1 KB size).
Starting at $1000 there is the 4 KB internal EEPROM area (providing
the controller is reset in Expanded Mode). $2000 to $6FFF is filled with
(linear) external RAM again.

The 4 KB area from $7000 to $7FFF makes the Data Window.
With 1 MB RAM on-board there are 256 possible pages. With 256 KB
RAM (standard version) there are still 64 pages. Note: Some of the
pages may be visible in the Data Window and in the linear address
space at the same time, as shown in the figure above.

Flash Programming
The Flash memory on the HC12compact can be programmed using

the TwinPEEKs monitor program. Please refer to the AMD data sheets
if you want to create your own programming functions. Maybe the
following code example can be helpful:

;--
; Func: Write Flash Word
; Args: Y = Destination Address (must be even!)
; D = Word to write
;--
;
wrFlashWord pshx
 pshd
 ldaa PPAGE
 psha
 movb #$02,PPAGE
 movw #$00aa,$aaaa
 movb #$01,PPAGE
 movw #$0055,$9554
 movb #$02,PPAGE
 movw #$00a0,$aaaa
 pula
 staa PPAGE
 puld
 std 0,y
 ; /Data Polling Sequence
 ldx #1000 ; 1000 x 8 x 0,125æs
_wrflcploop cpd 0,y ; [3]
 beq _wrflwdone ; [1]
 dex ; [1]
 bne _wrflcploop ; [3]
_wrflwdone pulx
 rts

;--

Flash Write Algorithm

HC12compact

14

7. RS232 Interface
The HC812A4 has two internal asynchronous serial ports (SCI0

and SCI1). Each port provides an input (RxD) and an output (TxD), but
no handshake signals.

Both ports work mostly independent from each other. Thus, the
second SCI channel can be disabled and the two spare I/O-signals can
be used as handshake signals for SCI0 (needs some user software).

In this case, or in the case that both SCI channels will be used, the
solder pads BR6 and BR7 must be closed. By doing this, the HC12 port
signals PS2 and PS3 are connected to a receiver and transmitter channel
of the RS232 level converter IC10.

The firmware for the SCI ports is not difficult, as shown in the
following example:

;==;
; File: SCI12.A
; Func: Serial-I/O via the Serial Communication Interface (SCI0)
;==;

; CPU 68HC12
; include "reghc12.inc"

SC0BD equ SC0BDH
SC0CR equ SC0CR1

; Func: Initialize SCI (9600 Baud, 8N1, Polling Mode)
; Args: -
; Retn: -
; Dest: D
;
initSCI ldd #26 ; 19200 Bd
 std SC0BD
 ldd #$000c ; 8N1, TE + RE
 std SC0CR ; A:B -> SC0CR1:SC0CR2
 rts

; Func: Test if any character available (received)
; Args: -
; Retn: A = 0 (Z = 1) -> no char
; A <> 0 (Z = 0) -> char available
; Dest: -
;
testSCI ldaa SC0SR1 ; read status
 anda #$20 ; receive data reg full?
 rts ; returns 0, if no data

; Func: Get character from SCI (wait for)
; Args: -
; Retn: A = char
; Dest: -
;

HC12compact

15

getSCI brclr SC0SR1,$20,getSCI ; receive data reg full?
 ldaa SC0DRL ; read out data
 rts

; Func: Send a character via SCI
; Args: A = char
; Retn: -
; Dest: -
;
putSCI brclr SC0SR1,$80,putSCI ; transmit data reg empty?
 staa SC0DRL ; send data
 rts

;==;

HC12compact

16

8. Peripherals on the SPI-Bus
The HC12compact uses the SPI (Serial Peripheral Interface) of the

HC12 to communicate with the on-board Real Time Clock, A/D-Con-
verter and D/A-Converter. The HC12 works as a SPI master and needs
one select line for each SPI slave.

To select one of the SPI slaves the HC12compact uses the port
signals PH4 and PH5 of the controller and the decoder IC6B. With
these two signals, the decoder generates four different conditions:

noneinactive11

ADC/SPICS210

DAC/SPICS101

RTC/SPICS000

selected SlaveSelect-OutputPH5PH4

PH4=PH5=H is the default state (no Slave selected).

The following listing shows examples for initializing and
sending/receiving. There are no arguments for the init function, the
send/receive function expects the character to send in accumulator A
and gives back the received value in the same way.

;===
; File: SPI12.A
; Func: HC12 SPI Routines
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.0
; Date: 08.02.98
;===

; SPI Slave Chip Select Decoder:
; SPICOD0 SPICOD1
; PH4 PH5
; ------------------------------
; 0 0 SPICS0 RTC
; 1 0 SPICS1 DAC
; 0 1 SPICS2 ADC
; 1 1 none selected

initSPI bset PORTH,$30 ; SPICOD0/1 (PH4,5) = H
 bset DDRH,$30 ; PH4,5 Output
 bset DDRS,$e0 ; /SS,SCK,MOSI Output
 movb #$03,SP0BR ; SPI Rate = ECLK/16 (500kHz)
 movb #$54,SP0CR1 ; SPE+MSTR+/CPOL+CPHA
 movb #$08,SP0CR2 ; as default
 rts

HC12compact

17

xferSPI staa SP0DR
_xfs1 tst SP0SR
 bpl _xfs1
 ldaa SP0DR
 rts

;===

Real Time Clock
The Real Time Clock (RTC4553 from Seiko/Epson) not only uses

the SPI signals and a select line, but an additional write enable signal.
PH6 serves for this purpose. The default state of PH6 is H (Read).
Select the RTC with PH4=PH5=L.

The following listing shows basic I/O-functions. Some additional
source codes are available on disk, e.g. for reading/setting the time and
date. Please check the RTC data sheet of the manufacturer for details!

;===
; File: RTC12.A
; Func: HC12 Driver Routines for RTC4553
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.0
; Date: 08.02.98
;===

; SPICOD0 = PH4 = 0 selects
; SPICOD1 = PH5 = 0 the RTC
; /WRRTC = PH6

initRTC bset PORTH,$40 ; /WRRTC (PH6) = H
 bset DDRH,$40 ; PH6 Output
 rts

getRTC movb #$5d,SP0CR1 ; SPE+MSTR+CPOL+CPHA+LSBF
 bset PORTH,$40 ; /WRRTC = H
 bclr PORTH,$30 ; SPICOD0/1 = L (enable SPICS0)
 bsr xferSPI ; send Register Address
 bsr xferSPI ; receive Data from RTC
 bset PORTH,$30 ; SPICOD0/1 = H (disable SPI slaves)
 rts

putRTC movb #$5d,SP0CR1 ; SPE+MSTR+CPOL+CPHA+LSBF
 bclr PORTH,$40 ; /WRRTC = L
 bclr PORTH,$30 ; SPICOD0/1 = L (enable SPICS0)
 psha
 bsr xferSPI ; send Register Address + Data
 pula
 bset PORTH,$30 ; SPICOD0/1 = H (disable SPI slaves)
 rts

;===

The RTC has a build-in alarm timer, which can cause an interrupt.
This is useful for waking up the processor after an idle period ("sleep
mode"). Close Jumper JP6 in order to use this feature.

HC12compact

18

The contents of the RTC is buffered by a lithium battery (E1). The
type used is specified for a life time of 5+ years.

A/D-Converter
The Analog-to-Digital Converter TLC2543 (Texas Instruments) has

11 input channels and a resolution of 12 bits.

To select the ADC set PH4=L and PH5=H.

The listing below shows how to initiate a conversion. Accumulator
A must contain the channel number before enetring the getADC
function. It returns the result in double accu D with 12 significant bits.

;===
; File: ADC12.A
; Func: HC12 Driver Routines for TLC2543 11ch 12bit ADC
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.0
; Date: 10.02.98
;===

; SPICOD0 = PH4 = 0 selects
; SPICOD1 = PH5 = 1 the ADC

initADC ; nothing to do!
 rts

; Func: Get ADC result
; Args: A=Channel ($00..$0A)
; Special channels:
; $0B: VREF/2 ($800)
; $0C: VREF- ($000)
; $0D: VREF+ ($FFF)
; $0E: enter power save mode
; Retn: D=Value (12 Bit significant)
;
getADC movb #$50,SP0CR1 ; SPE+MSTR+/CPOL+/CPHA
 bclr PORTH,$10 ; SPICOD0 = L (enable SPICS2)
 lsla
 lsla ; move channel no. to
 lsla ; upper 4 bits of control word
 lsla
 oraa #$0c ; lower nibble: DL=16Bits,MSB 1st,Unipolar
 psha ; save control word
 jsr xferSPI ; send control word
 jsr xferSPI ; send bits 8..15 (ignored by ADC)
 bset PORTH,$30 ; SPICOD0/1 = H (disable SPI slaves)
 ;
 ldaa #100 ; wait for conversion result
_gadcwt deca ; 4 cyc x 125 ns x 100 = 50µs (>10µs)
 bne _gadcwt
 ;
 bclr PORTH,$10 ; SPICOD0 = L (enable SPICS2)
 pula ; restore control word
 jsr xferSPI ; get data (high)
 tab
 jsr xferSPI ; get data (low)
 exg a,b ; order h/l
 lsrd
 lsrd ; move result 4 bits to the right
 lsrd

HC12compact

19

 lsrd
 bset PORTH,$30 ; SPICOD0/1 = H (disable SPI slaves)
 rts

;===

The A/D-Converter uses a voltage reference chip (IC11) which
delivers 4096 mV. One resolution step equates 1 mV, the lowest value
is at 0 mV and the highest at 4095 mV. If you need another voltage
reference, just cut off solder pads BR9 and/or BR8 and apply the
voltage values you need.

At the end of an A/D-conversion the ADC can generate an
interrupt. Close BR10 to detect this condition. After this you can utilize
the "End-of-Conversion" Interrupt via PT1 of the HC12.

D/A-Converter
The Digital-to-Analog Converter is a two channel / 12 bits resolu-

tion type from Linear Technology (LTC1454).

Select the DAC with PH4=H and PH5=L. No initialization needed.
Both DAC channels will be updated at the same time, so the output
function needs an array of two words (4 bytes total) as parameter:

;===
; File: DAC12.A
; Func: HC12 Driver Routines for LTC1454 2ch 12bit DAC
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.0
; Date: 09.02.98
;===

; SPICOD0 = PH4 = 1 selects
; SPICOD1 = PH5 = 0 the DAC

initDAC rts

; Update both DAC channels
; Args: X points to buffer[4] containing new DAC values
; X[0,1] for DACA, X[2,3] for DACB
;
updateDACx pshd
 movb #$50,SP0CR1 ; SPE+MSTR+/CPOL+/CPHA
 bclr PORTH,$20 ; SPICOD1 = L (enable SPICS1)
 ldab 0,x
 lslb
 lslb
 lslb
 lslb
 ldaa 1,x
 lsra
 lsra
 lsra
 lsra
 aba
 jsr xferSPI ; send DACA highest 8 Bit
 ldab 1,x

HC12compact

20

 lslb
 lslb
 lslb
 lslb
 ldaa 2,x
 anda #$0f
 aba
 jsr xferSPI ; send DACA lowest 4 Bit, DACB highest 4 Bit
 ldaa 3,x
 jsr xferSPI ; send DACB lowest 8 Bit
 bset PORTH,$30 ; SPICOD0/1 = H (disable SPI slaves)
 puld ; releasing /CS will latch new DAC output!
 rts

;===

The DAC contains a voltage reference which results in an output
level between 0 mV and 4095 mV. BR4 closes the reference output and
the reference input of both channels. The lower reference voltage is tied
to ground via BR3. Other voltage values may be applied after discon-
necting these solder pads.

HC12compact

21

9. Peripherals on the System Bus
The HC812A4 provides several Chip Select signals. The signals

/CS0../CS3 (Port F) are used on the HC12compact to control peripheral
devices on the system bus:

general purpose Chip Select$0280/CS3

LC-Display (alphanum.) control or general
purpose select signal (associated with R/W and
E-Clock)

$0380/CS2

CAN-Controller (select Register/Address)$0300/CS1

CAN-Controller (Read-/Write-Access to the selec-
ted Register/Address)

$0200/CS0

FunctionAddressSignal

Overview Chip Select Signals

Normally the initialization code of the microcontroller application
should stretch the chip select signals (up to 3 E-Clocks). In this way the
MCU can communicate also with slow peripheral devices. The
maximum cycle time is 1µs at a 16 MHz xtal clock.

CAN-Controller
The CAN (Controller Area Network) is a multimaster network

protocol, which originally started in the the automotive industry. Now it
has become an industry standard, supported by a large number of
manufacturers.

Motorola supports the CAN standard too, e.g. with the On-Chip
CAN module of the HC912BC32. Since the HC812A4 does not have a
CAN module On-Chip, the HC12compact provides an external CAN
controller chip.

The device used is a SJA1000 by Philips (compatible to the former
PCA82C200). It contains a complete implementation of the lower level
layers of the CAN protocol. This means, the user need not to deal with

HC12compact

22

low level implementaion issues and can concentrate on the (higher
level) application layers.

The whole CAN description is still rather complex. Please refer to
the CAN controller documentation available on the web for details!

The following listing shows the low level accesss functions used
with the SJA1000 CAN device:

;===
; File: CAN12.A
; Func: HC12 Driver Routines for SJA1000 CAN2.0B Controller
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.0
; Date: 14.02.98
;===

;---
; Func: Target dependend hardware access functions
; Rem.: Modify this according to the actual bus interface!
;---
CAN_ADDR equ $0301 ; write to this address to select a register
CAN_DATA equ $0383 ; read/write data from/to selected register
;---

; Func: Read CAN Controller Register
; Args: X = Register Number ($00..$1f)
; Retn: A = Data
;
readSJA1000 stx CAN_ADDR-1
 ldaa CAN_DATA
 rts

; Func: Write CAN Controller Register
; Args: X = Register Number ($00..$1f)
; A = Data
;
writeSJA1000 stx CAN_ADDR-1
 staa CAN_DATA
 rts

;===

The Philips CAN controller does not have an HC12 bus interface.
Therefore the decoders IC5B and IC6A are used to link the Philips part
with the Motorola bus.

Each access is made in two steps: First the desired control register
of the SJA1000 is selected by writing the register address (for a list of
register adresses see the SJA1000 data sheet) to CAN_ADDR. Then the
content of this control register can be read or written by accessing
CAN_ADDR.

HC12compact

23

The CAN controller is able to generate an interrupt via its /INT
output. To make use of this feature close solder pad BR6. Then you
may detect the CAN interrupt condition via PT0 of the HC12.

Note: You will need a media interface device between the CAN
controller and the two-wire CAN bus. The PCA82C250 (also from
Philips) is a typical device for this purpose. We also offer ready-to-use
interface modules based on this chip.

LCD-Interface
There are -zillions of alphanumeric LC-Diplays (made by Philips,

Seiko, Toshiba, Batron, Picvue, Optrex, Sharp...). Most of them use a
Hitachi HD44780 (or compatible) controller and a standard 14-pin
connector with the following scheme:

9DB7Data Bit 7D714

10DB6Data Bit 6D613

11DB5Data Bit 5D512

12DB4Datenbit 4D411

13DB3Data Bit 3D310

14DB2Data Bit 2D29

15DB1Data Bit 1D18

16DB0Data Bit 0D07

38ENA_LCDEnableE6

21R/WRead/WriteR/W5

32A1Register SelectRS4

./../.Contrast VoltageVEE3

17/18VCC+5VVDD2

19/20GNDGroundVSS1

ST5
Pin

HC12compact
Signal

FunctionLCD
Signal

LCD
Pin

The table also contains pins on connector ST5 which are used to
connect such a LCD device to the HC12compact.

HC12compact

24

The following listing shows a part of the LCD driver routines (see
disk for the complete source). The routines need a two byte buffer
PosXY which the user program has to provide.

The header must contain a definition of the display size (number of
columns and lines, see example). 2x16, 2x20, 2x40 and 4x20 are
common types.

;===
; File: ALCD12.A
; Func: HC12 Driver Routines for alphanum. LC-Displays
; (HD44780 based, from 1x8 up to 2x40/4x20 characters)
; Copr: (C)1998 by Oliver Thamm
; Vers: 1.2
; Date: 07.02.98
;===
;-- defines ---

PosX equ PosXY+0 ; RAM location PosXY must be
PosY equ PosXY+1 ; defined in the main program!

;--
; Func: LCD definitions
; Rem.: Modify this according to LCD type used!
;--

MAX_X equ 40 ; number of characters per line (8..40)
MAX_Y equ 2 ; number of lines (1,2 or 4)

RowAddrTable dc.b $00 ; DDRAM address for 1st line
 dc.b $40 ; DDRAM address for 2nd line
 dc.b $10 ; DDRAM address for 3rd line
 dc.b $50 ; DDRAM address for 4th line

;--
; Func: Target dependend hardware access functions
; Rem.: Modify this according to the actual bus interface!
;--

LCD_CMD equ $0381
LCD_DATA equ $0383

;-- write a command byte --

_writeCmd brset LCD_CMD,$80,_writeCmd
 nop
 staa LCD_CMD
 rts

;-- write a data byte ---

_writeData brset LCD_CMD,$80,_writeData
 nop
 staa LCD_DATA
 rts

;--
; Func: Initialize LCD
; Args: -
; Retn: -
;--
initLCD psha
 pshy
 ldy #_iniTableStart
_iniCmdLoop ldaa 0,y
 bsr _writeCmd
 iny
 cpy #_iniTableEnd

HC12compact

25

 bne _iniCmdLoop
 clr PosX
 clr PosY
 puly
 pula
 rts

_iniTableStart dc.b $38 ; Function Set (8Bit,5x7)
 dc.b $38 ; dito
 dc.b $0C ; Display on, Cursor off, Blink off
 dc.b $01 ; Clear display
 dc.b $06 ; Entry Set: Increment, No shift
 dc.b $80 ; Reset Address counter
_iniTableEnd
;===

HC12compact

26

10. Power Management
Nearly all devices on the HC12compact have some kind of a

power-down or suspend mode. Also parts of the controller itself can be
powered up and down seperately. This makes the HC12compact
suitable for low-current/battery-driven applications.

Some examples:

w turn off internal modules of the HC12, e.g. ADC or Timer
w turn off the external bus interface (providing the programs runs

in an internal memory location)
w Optional: use of the PLL mode clock generation
w Power Down modes of ADC, DAC and CAN-Controller

However, the on-board RAM can not be buffered by a backup
battery. Instead, please reduce overall power consumption of the whole
module, as described above.

HC12compact

27

11. Application Hints
In this section some special programming issues of the HC12 - and

the HC12compact in particular - will be discussed. Please note, that this
hardware manual can not cover all topics and techniques necessary to
program the HC12 in assembly or a high level language. Please refer to
the technical data books, reference and user manuals of the HC12 and
the programming language you intend to use.

About Operating Modes
The operating mode of the HC12 MCU is determined by the three

signals MODA, MODB and BKGD at the time of reset. The following
table shows all eight combinations.

Externer 16 Bit Datenbus aktiv, volle
Geschwindigkeit möglich

Normal Expanded Wide111

reserviert110

Externer 8 Bit Datenbus aktiv, langsamer als
16 Bit Zugriff

Normal Expanded Narrow101

kein externes Businterface, interner EEPROM
als Programmspeicher gemappt

Normal Single Chip100

Wie Normal Exp. Wide Mode, einige
Schutzmaßnahmen sind jedoch deaktiviert

Special Expanded Wide011

Testbetriebsart - CPU disabledSpecial Peripheral010

Wie Normal Exp. Narrow Mode, einige
Schutzmaßnahmen sind jedoch deaktiviert

Special Expanded
Narrow

001

Background Debugging sofort aktiv, kein
externes Businterface

Special Single Chip000

ErläuterungStartbetriebsartBKGDMODBMODA

Operating Modes and Mode Select Pins

Just two of them are important while working with the HC12com-
pact: Normal Single Chip Mode and Normal Expanded Wide Mode.

During application development the Normal Single Chip Mode is
the preferred operating mode. In this mode the 812A4 moves the inter-
nal EEPROM block to $F000-$FFFF. Doing so, the monitor program,
which was programmed into EEPROM during production of the
HC12compact, becomes active.

HC12compact

28

As the name says, in Single Chip Mode the external bus interface is
disabled. That is why the monitor immediately switches to Normal
Expanded Mode by setting the MODE control register and initializes
the bus interface.

It is recommended to use Normal Single Chip Mode settings, even
if you want to connect a Background Debug Interface. The BDM
hardware can start the target MCU in Special Single Chip Mode, since
it can override the high level on the BKGD pin. In this mode BDM is
active out of reset and the CPU does not try to start a user program.
This makes sense especially at the beginning of the debugging when
there is not any user code.

A BDM pod is useful, but not mandatory when working with the
HC12compact, since the monitor program handles download into Flash
or RAM and helps with several debugging functions.

If debugging is finished, the monitor is not required anymore. To
start the application, which resides in the external Flash memory, just
set the jumpers to Normal Expanded Mode and reset the board.

Initialization Example
In Normal Expanded Mode the data bus is 16 bits wide and the chip

select line for the program memory (/CSP0) is active from reset. The
user program resides in Flash memory and the internal EEPROM is
located at $1000-$1FFF.

As soon as the reset line goes high, the HC12 fetches the Reset
Vector from $FFFE,FF and starts execution at the address this vector
points to.

Every program starts with a number of initializations. The sequence
shown in the listing below is an example for the HC12compact starting
in Expanded Wide Mode:

HC12compact

29

main lds #StackPtr ; Init Stack Pointer
 ; === REM: MCU starts in Normal Expanded Wide Mode ===
 clr COPCTL ; Disable Watchdog
 movb #$0c,PEAR ; LSTRE+RDWE, ECLK
 movb #$3F,CSCTL0 ; Enable CSP0+CSD+CS3+CS2+CS1+CS0
 movb #$10,CSCTL1 ; CSD covers $0000-$7fff
 movb #$30,CSSTR0 ; CSP0+CSD not stretched (CSP1:3x)
 movb #$FF,CSSTR1 ; CS0..3 stretched (3x)
 movb #$fe,PPAGE ; Select Program Page $FE
 movb #$0f,MXAR ; A16E...A19E
 movb #$c0,WINDEF ; DWEN+PWEN
 movb #$80,DDRE ; PE7=Out (LED driver)
 movb #$00,PORTE ; LED on

The sequence starts with the setup of the stack pointer. Users
"love" to forget this, so double check this line if your program behaves
"strange".

Another important issue is the watchdog (COP). If don't use it in
your application - switch it off! If you forget this, you will encounter a
reset about every second.

Initialization of the Port E Assignment Register (PEAR) follows.
The configuration bits NECLK, LSTRE and RDWE have influence on
some important bus signals. NECLK must be cleared to zero in order to
output the E-Clock on PE4. The /LSTRB signal is used in conjunction
with address line A0 to access the two 8 bits wide RAM devices, there-
fore LSTRE must be set to one. The Read/Write signal is also
necessary, so RDWE must be set too.

The following code lines establish the appropriate chip select
settings. It is recommended to use this example setup in a user applica-
tion too. For details refer to the HC812A4 Technical Summary.

The PPAGE register has a reset value of $00. Before enabling the
paging, it makes sense to re-initialize the PPGAE register with $FE. By
doing this, the same memory page is visible in the $8000-$BFFF area as
in the linear address mode immediately after reset.

In the following line the Memory Expansion Assignment Register
(MXAR) is used to determine, how many lines of Port G are used as
additional address lines. The HC12compact uses A16 to A19, so two
lines (PG4 and PG5) remain general purpose I/Os.

HC12compact

30

By setting two bits in the WINDEF register, the paging for both
program and data memory is enabled.

Finally, PE7, which drives a LED via a buffer, is set to output and
the LED is switched on. This is the end of the example initialization
sequence.

Schematic Diagram
To ensure best visibility of all details, the schematic diagram of the

HC12compact is provided as a separate document (2 pages).

Additional Information on the Web
Additional information about the HC12compact Controller Module

will be published on our Website, as it becomes available:

http://elmicro.com/en/hc12compact.html

HC12compact

31

12. Monitor Program TwinPEEKs
Software Version 1.3d

Introduction
The monitor program TwinPEEKs is useful to load and execute

user programs and to view and modify memory locations.

TwinPEEKs resides in the internal EEPROM of the HC12. The
whole 4 KB EEPROM area plus a region of about 512 bytes of RAM
are reserved for TwinPEEKs. The user program will be loaded into an
external (RAM or Flash) memory space. For details see "Memory Map"
below.

The HC12compact must be jumpered for Normal Single Chip
Mode in order to start TwinPEEKs out of EEPROM (see section
"Jumpers"). During initialization the monitor program automatically
switches to Normal Expanded Wide Mode.

TwinPEEKs on the HC12compact communicates with a host PC
via the first serial interface (SCI0). Communication parameters are:
19200 Baud, 8N1, no protocol. These parameters are based on the
standard 16 MHz crystal clock of the HC12compact.

When the monitor program shows its prompt (containing the actual
program page setting from the PPAGE register), it is ready to receive
your commands.

Notation
All numbers are in hex format (w/o any additional characters). The

input is not case-sensitive.

A monitor command consists of a single character, followed by a
list of arguments. The argument list may contain up to six items, sepera-
ted by a space or comma.

The address space is 64 KB, so addresses have a maximum length
of 4 digits. This address space of the HC12 contains all ports and
control registers.

HC12compact

32

Note:
An end address in TwinPEEKs is the address after the last

included address. E.g. the command "D 1000 1200" displays the
memory ranging from $1000 up to (including) $11FF.

An editable line buffer receives the RS232 user input. Valid ASCII
codes are from $20 to $7E. Backspace ($08) deletes the character left of
the cursor. Enter ($0A) finishes the input.

Write Access

Flash Memory
TwinPEEKs is able to write Flash memory bytes. Please note, that

the memory cell will not be deleted automatically! The X command
should be used to delete a Flash memory block before writing to it. It is
not possible to delete single bytes or words (see Flash memory data
sheet for details).

The Flash memory device is organized in words (double bytes),
though TwinPEEKs has no problem to write even single bytes. For this
purpose the monitor reads the other byte of a Flash word, adds the
desired byte and then writes the complete word information to the
Flash.

There is an area from $F000 to $FFFF where the internal EEPROM
hides the external Flash memory area. The EEPROM is protected from
write accesses in order to protect the monitor program in it. So
TwinPEEKs' strategy is to access the external Flash memory instead of
the internal EEPROM if a write access to the area mentioned above
takes place. Reads from this area are not affected, a read from $F000 or
above will access the EEPROM (which the CPU actually "sees").

With this behaviour the monitor program helps to load a complete
user program - together with all interrupt and reset vectors - into Flash
memory. Just load the user program, change the jumpers to Expanded
Wide Mode, reset the board and the program will start in real time.
After switching back to Single Chip Mode, the monitor will start again.

HC12compact

33

As mentioned above, you will not be able to display what you have
loaded before into the $F000-$FFFF Flash memory area. A memory
dump command will always show what the CPU sees (the EEPROM!).
To have a look at the contents of the Flash memory between $F000 and
$FFFF you should select program page $FF (use "P FF") and display
the "moved" memory contents of $B000-$BFFF.

Ports and Control Registers
Please note, that not all ports and control registers may be read and

written in the same way. You may get an error message when writing to
a write only register, because TwinPEEKs tries to read back the
contents in order to verify the write access. A typical example are inter-
rupt flags, which are cleared by writing a one-bit to the desired bit
position. Reading back the one's written will result in zero's in this case!

Autostart Function
To provide an easy way to start a user program out of reset, the

monitor program has an autostart function.

After reset and some basic initializations TwinPEEKs detects if the
MCU signals PAD0 and PH1 are connected. In this case, the monitor
jumps to location $8000 instead of starting the normal monitor
command loop.

The advantage of this autostart mode is that the users need not to
worry about system initialization, because the monitor program will do
this job before jumping to the start of the user code. The mode jumpers
also may remain in the Single Chip Mode position. The user just has to
connect pins 45 (PH1) and 47 (PAD0), which are located side-by-side
on connector ST5.

HC12compact

34

Interrupt Vectors
The interrupt vectors of the HC12 are located at the end of the 64

KB memory map. On the HC12compact this is a write protected
EEPROM area, if the monitor program is active. Normally, this would
prevent the user from changing the interrupt and reset vectors.

There was a similar problem with the HC11 running in bootstrap
mode. The HC11 used pseudo interrupt vectors in the internal RAM,
and so does the TwinPEEKs monitor on the HC12compact.

The user program just has to place a jump instruction into RAM to
call a specific interrupt function. Here comes an example for the SPI
interrupt:

ldaa #$06 ; JMP Opcode
staa $0BC7 ; SPI Pseudo Vector
ldd #isrFunc ; Jump Address

std $0BC8 ; SPI Pseudo Vector + 1

The following listing is part of the monitor program. It shows, how
(and where) the monitor redirects all interrupts:

 FFCE : 0B B8 dc.w RAMTOP-72 ; KWUH
 FFD0 : 0B BB dc.w RAMTOP-69 ; KWUJ
 FFD2 : 0B BE dc.w RAMTOP-66 ; ATD
 FFD4 : 0B C1 dc.w RAMTOP-63 ; SCI1
 FFD6 : 0B C4 dc.w RAMTOP-60 ; SCI0
 FFD8 : 0B C7 dc.w RAMTOP-57 ; SPI
 FFDA : 0B CA dc.w RAMTOP-54 ; Pulse Accu Input Edge
 FFDC : 0B CD dc.w RAMTOP-51 ; Pulse Accu Overflow
 FFDE : 0B D0 dc.w RAMTOP-48 ; Timer Overflow
 FFE0 : 0B D3 dc.w RAMTOP-45 ; TC7
 FFE2 : 0B D6 dc.w RAMTOP-42 ; TC6
 FFE4 : 0B D9 dc.w RAMTOP-39 ; TC5
 FFE6 : 0B DC dc.w RAMTOP-36 ; TC4
 FFE8 : 0B DF dc.w RAMTOP-33 ; TC3
 FFEA : 0B E2 dc.w RAMTOP-30 ; TC2
 FFEC : 0B E5 dc.w RAMTOP-27 ; TC1
 FFEE : 0B E8 dc.w RAMTOP-24 ; TC0
 FFF0 : 0B EB dc.w RAMTOP-21 ; RTI
 FFF2 : 0B EE dc.w RAMTOP-18 ; IRQ / KWUD
 FFF4 : 0B F1 dc.w RAMTOP-15 ; XIRQ
 FFF6 : 0B F4 dc.w RAMTOP-12 ; SWI
 FFF8 : 0B F7 dc.w RAMTOP-9 ; Illegal Opcode
 FFFA : 0B FA dc.w RAMTOP-6 ; COP Fail
 FFFC : 0B FD dc.w RAMTOP-3 ; Clock Monitor Fail
 FFFE : F8 00 dc.w main ; Reset

HC12compact

35

Memory Map
The following table contains the memory usage on the HC12com-

pact if the TwinPEEKs monitor is active (external memory regions not
shown):

monitor codeint. EEPROM0000F000

redirected interrupt vectorsint. RAM$0C00$0BB8

monitor stackint. RAM$0BB8$0Axx

monitor variablesint. RAM$0Axx$0A00

available for user programint. RAM$0A00$0800

UsageMemoryEndStart

HC12compact

36

Monitor Commands

Analog/Digital Converter

Syntax: A
Displays the results of all 11 ADC channels (#0...#10) and the three

internal reference channels #11 (Vref/2), #12 (Vref) and #13 (GND).
The results are updated continously. Press Enter to abort this command.

The values range from $0000 to $0FFF (12 bits). $0000 equals 0V,
$0FFF equals 4.095V.

Command w/o arguments:

Display ADC resultsA

Dump Memory

Syntax: D [<SADR> [<EADR>]]
Displays the memory contents. Each display line contains 16 bytes

in hex and in ASCII format. Non-printable ASCII characters are
diplayed as a dot.

Command with one, two or three arguments:

Displays 4 lines ($40 bytes) starting at the current
address

D

Displays 4 lines ($40 bytes) starting at $F000D F000

Displays the memory from $F000 to $F7FFD F000 F800

HC12compact

37

Edit Memory

Syntax: E [<SADR>]
Edit memory bytes.

Command w/o or with one argument:

Edit memory starting at the current addressE

Edit memory starting at $F000E F000

In edit mode, the monitor displays the address and its contents.
Then it waits for a new value or one of the following commands:

Quit edit modeQ

Quit edit mode.

Display current address again=

Previous address-

Next address<ENTER>

If a new value was given, the monitor writes and verifies it. Flash
memory may be written as well as RAM cells. If everything is okay, the
next line with the next address is output.

If a Flash write failes, check if the cell was erased before (using
monitor command X).

HC12compact

38

Fill Memory

Syntax: F <SADR> <EADR> <BY>
Fills a memory area with a specific value.

Command with three arguments:

Fills memory from $F000 to $F7FF with $FFF F000 F800 FF

The command will be aborted if a write error occurs.

Goto Address

Syntax: G [<SADR>]
Executes a user program (using JSR) at the given address. The

address is displayed by the monitor. User program may return to the
monitor using a RTS instruction.

Command w/o or with one argument:

Call user program at the current addressG

Call user program at $F100G F100

In order to successfully return to the monitor program, the user
program must not change the stack position, the serial interface and
interrupt masks.

Help

Syntax: H
Displays a short help message. Command w/o arguments:

Displays a list of available commandsH

HC12compact

39

Flash-ID

Syntax: I
Displays the device ID of the Flash memory device. Should be

2223 for the 29F400BT (default type used). see AMD data sheet for
details)

Command w/o arguments:

Info on Flash device IDI

Load S-Records

Syntax: L [<OFFS>]
Loads S-Record (code and/or data) into memory. The S-Records

alraedy contain the address information needed.

The destination addresses may be relocated by providing an offset
argument to this command:

Loads S-Records into memory and adds $E000 to all
destination addresses. (example: data in the range
from $1000 bis $10FF will be loaded at $F000 to
$F0FF)

L E000

Loads S-Records into memoryL

To use this command, your terminal software on the PC must be
able to send the S-Record file after the message "Loading..." is
displayed by TwinPEEKs. This function normally is known as "Text-"
or "ASCII-Upload".

The S-Record lines are not echoed by the monitor. The command
will be cancelled if a write error occurs. The user may stop the load
function by pressing Escape.

The monitor can process S0, S1 and S9 types of S-Record lines.
For details on S-Records see the motorola documentation.

HC12compact

40

Note:
Writing to Flash memory takes a certain execution time which is

longer than for RAM. Therefore S-Record data must not be sent faster
then the monitor program can write it to Flash.

To synchronize both data receive and write, there is a simple proto-
col which uses the monitor: After a S-Record line is finished
(processed) the monitor sends a * (asterisk). This is a signal to the
terminal program on the PC side, that another S-Record line may be
sent.

Even simple terminal programs (such as TERMINAL.EXE from
Windows 3.1) can handle this protocol.

Another way is to send the S-Records with full speed and store
them in RAM. The offset argument of the load command may be used
to modify the destination address. When the download is finished, the
code can be moved using the move command to the final destination in
Flash memory.

Move Memory

Syntax: M <SADR> <EADR> <ADR2>
Copies the memory area from <SADR> to <EADR> to another

area starting at <ADR2>. The size <LEN> of the memory block to
move is:

<LEN> = <EADR> - <AADR>

Command with three arguments:

Copies the memory block $1000 - $17FF to
$F000 - $F7FF

M 1000 1800 F000

The monitor detects whether original and destination block overlap.
In the case that <ADR2> is lower than <SADR> the monitor starts
copying from the bottom of the block, otherwise from top.

If a write error occurs, the command is aborted.

HC12compact

41

Page Select

Syntax: P [<PAGE>]
Selects a memory page using the PPAGE register. The selected

page is then visible in the 16 KB area from $8000.

The 29F400 Flash memory has 512 KB or 32 pages. To select the
last page use page number $1F. Since the upper two bits are not signifi-
cant, the same page is selected with $FF.

If the command is used w/o argument, the current program page
number is displayed.

Selects PPAGE=$12P 12

Displays the currently selected program page numberP

Real Time Clock

Syntax: T [<HH> <MM> <SS> <DD> <MM> <YY>]
The command displays the RTC time when used w/o argument. Of

course, the optional RTC chip must be present.

To set the Real Time Clock, add the following arguments to the
command: hour, minute, second, day, month, year. Each argument is
two decimal digits long (BCD format).

Remark: The RTC will always set the seconds to 0.

Sets the RTC to 14:30, October 18 98T 14 30 00 18 10 98

Displays time and dateT

HC12compact

42

Digital/Analog Converter

Syntax: V <CH0> <CH2>
The optional DAC has two channels which may be adjusted with

this command. The values range from $0000 to $0FFF (12 bits). $0000
equates 0V, $0FFF equates 4.095V.

Outputs 2.048V on DAC channel 0 and 4.095V on
DAC channel 1

V 800 FFF

Sektor/Bulk Erase Flash

Syntax: X [<SECTOR>]
Deletes a single Flash memory sector. The argument denotes a

sector address as described in the 29Fx00 Flash memory data sheet. The
sector address represents the address lines A12-A17 of the Flash
memory.

If no argument is given, the command erases the whole Flash chip
(Bulk Erase).

The user has to confirm the erase process by typing "Y".

The following table shows the sector addresses of the Am29F400T
and the corresponding program page numbers:

HC12compact

43

1F7C000-7FFFF16KB3E

1E (upper half)7A000-7BFFF8KB3D

1E (lower half)78000-79FFF8KB3C

1C-1D70000–77FFF32KB38

18-1B60000–6FFFF64KB30

14-1750000–5FFFF64KB28

10-1340000–4FFFF64KB20

0C-0F30000–3FFFF64KB18

08-0B20000–2FFFF64KB10

04-0710000–1FFFF64KB 08

00-0300000–0FFFF64KB 00

PPAGEMemory
Area

Sector
Size

Sector
Address

HC12compact

44

