Getting Started

With the Raisonance 8051, XA
and ST6 Development Kits

Revision 1.00

Getting Started with the Raisonance Development Kits

Information in this document is subject to change without notice and daes not
represent a commitment on the part of the manufacturer. The software described in this
document is furnished under license agreement or nondsclosure agreement and may
be used or copied in accordance with the terms of the agreament. It is against the law
to copy the software on any medium except as gecificdly allowed in the license or
nondisclosure agreement. No part of this manua may be reproduced or transmitted in
any form or by any means, electronic or mecdhanicd, including phdocopying,
recording, or information storage and retrieval systems, for any pupose other than the
purchaser’s personal use, without prior written permission.

Every effort was made to ensure the accuracy in this manual andto gve gpropriate

credit to persons, companies and trademarks referenced herein.

© American Raisonance 2000

Locd Distributor

American
RAISONANCE

-

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.
PC® is aregistered trademark of International Business Madines Corporation.

Written by Andrew Ayre

Page 2

Getting Started with the Raisonance Development Kits

Contents
Chapter 1. IntroducCtion.......ccccoviiiiiiiiiice e, 7
D= Y7 o o] 0= 1A 1o K= 8
Development TOOI NAIMES.........ccviiiiiiiesieiieeeerie e 9
Conventions Used in thiSManUalcocoieiiiiinineeeeee e 10
Additional Help or INfOrMationcccovceeiiieiieeesesce e 11
Chapter 2. Development StepSccovvvvceiiiiiieieiiiiiiee e, 13
The Relationship Between the TOOIS........ccco e 13
TS (] o N T =S 15
Summary of File EXTENSIONS.......ccoiiiiriieririeee e 16
Chapter 3. Installing the Software.............ccevvveviiineenn, 17
Minimum System REQUITEMENES.coureriririeieie e s 17
INStalliNg the SOftWAIEocceeeceece e e 17
DITECLONY SEIUCIUIE.......c.eivietestesiesie ettt et e se e e sresaenne s 18
Chapter 4. Getting Started with RIDEccccccceeee 21
OVEIVIEW Of RIDEooiiiie ittt sttt 21
SEATING RIDE ...ttt e e e b e e s aaeenseeteesseesneeenseens 23
Creating @ PTOJECL......cc.i it 24
Creating and Adding @ S0UrCE File........ccvovieiie e 26
BUIlAING thE PrOJECL.......co et 27
AddiNG MOFE COUE.oeieeciee ettt e e e e e e snreereesneeenes 28
Starting the RIDE DEDUJJEYccueiueriririeeieieeeee e 32
Breakpoints and Measuring EXeCULION TIME.......cccueveveieereesireeeesee e eee e 38
Setting WEaLChPOINESc..eiviiieiieiieei et b e 40
S T TU P (o) g 1N 1 2= € e o P 41
Stepping Through COOEcc.eiiiiieeeee e 42
Final Code AdAItIONSccceiieicie e ere e 45
Tracing and Displaying WaVEfOrMSc.coiiriiieieecee e 46
Generating Waveforms ON PINSoouiiiiiiecnie et 50
Chapter 5. Compiler Listing and Linker Map Files 55
Understanding the Compiler Listing File.........oooveieieeciee e 55
Understanding the Linker Map File.........ooiiiieeeeeee e 57
Chapter 6. Header Filesccooiiiiiiviiiiiii e, 61
Chapter 7. CoOmpiler ... 63
Changing the Compiler SettingSIN RIDE..........ccccoiiieiie e 63
8051 Compiler OptioNS OVEIVIEWcccueeiueeiiieiiecieesieecee e estee e ereesteesaeesaeesneens 64
XA Compiler OptioNS OVEIVIEWccoveruireriiriieiieeeee e see e s 73
ST6 Compiler OPtioNS OVEIVIEW.......ccueeiieiiieiiee et e see e stee e e ete e s s sneeneens 81

Getting Started with the Raisonance Development Kits

Compiler Command LiNE SYNLaX........cceeieereeiiieeieeseesiecsieeseesee e seeseeseeeseesneas 86
Chapter 8. Assembler ... 87
Changing the Assembler SettingSin RIDE..........coo v, 87
8051 Assembler OptioNS OVEIVIEWcoereeirieieieieree e 88
XA Assembler OptioNS OVEINVIEWc.ceieeiieiieeieeieeesieeseesieessseesseeseesnseessessseesnns 91
ST6 Assembler OptioNS OVENVIEW........cc.eririririeieeeie e 9
Assembler Command LiNe SYNLaX.........cceccueeieeiieiieiieesee e eieeesee e s 97
Chapter 9. LINKer ... 99
Changing the Linker SettingSiN RIDEcccoooi e 99
8051 Linker OptioNS OVEIVIEWccueiueiierierienienieee et 100
XA LinKer OptioNS OVEIVIEWWcccueiiieeiieeiieereesteesteesseeseesieesnseessessessseessessnnnns 106
STE LiNKer OPtioNS OVEIVIEWc..ooviiierieiesieniesiesiesiesiesies e e e e see e e seeeas 110
Linker Command Ling SYNEAXc.ccceereriereieeniesieesieesiee e esseesseesseeenseessee e enns 112
GlOSSAIY . 113
INAEX e 117

Page 4

Getting Started with the Raisonance Development Kits

Tables

TabIE 1.1 TOOIS OVEIVIEW ..ottt st besne e 8
Table 1.2 TOOI NBIMES. ..ot 9
Table 2.1 Summary oOf File EXIENSIONS........ccciiiiiiieieie s 16
Table 6.1 SFR Bit AQUrESSES........ccuiiiiiiiiiieeeeee e 62
Table 7.1 8051 Compiler SOUrCe SEItiNGScoveeeieieieie e 64
Table 7.2 8051 Compiler Floating Point SEttiNgs..........cocerererenenenesesese e 65
Table 7.3 8051 Compiler Code Generation SettingS.........cocvvvererieenenieeseenieseesee e 66
Table 7.4 8051 Compiler Listing SEttiNgSccooverereererierieriesie e 67
Table 7.5 8051 Compiler ObjeCt SEttiNGS......coveeeeririeieeee e 68
Table 7.6 8051 Compiler Memory Model SEttiNGScocvvereerernieneee e 70
Table 7.7 8051 Compiler Memory MOEIS.........ccooviiriiiiceeees e 70
Table 7.8 8051 Compiler Register SEttingS.......ccvoveeeieeeieeee e 71
Table 7.9 8051 Compiler Optimizer SEttiNGSccveveereeiie e 71
Table 7.10 8051 Compiler MeSsages SEttiNGS.........coveeererreerererese e sreeees 72
Table 7.11 XA Compiler SOUrce SEttiNgS.......ccccvviveieeiie et 73
Table 7.12 XA Compiler Floating Point SEttiNgS........cccevvveceereevin e e 73
Table 7.13 XA Compiler Code Generation Settings..........ccccceeeeeiieeeireeseesee e esvee s 74
Table 7.14 XA Compiler Listing SEttiNgScccceverieierieieriererieseese e 76
Table 7.15 XA Compiler Object SEttiNgS......cccveviieieeiie e 77
Table 7.16 XA Compiler Memory Model Settings..........ccooeeeneeienenie e 78
Table 7.17 XA Compiler Memory MOdEIS..........cooveiieiie i 79
Table 7.18 XA Compiler Optimizer SEttiNgS........cccevvreerirrerierierese e 79
Table 7.19 XA Compiler MeSsages SEttiNgSccovveeriereerenienieeie s see e 80
Table 7.20 ST6 Compiler SOUrCe SEttiNGS.......cooueieieriiie e 81
Table 7.21 ST6 Compiler Code Generation SEttings.........ccccceveveeveeccieeieesee e 81
Table 7.22 ST6 Compiler Listing SEttiNgS........ccovereeeerierieriereerie e 83
Table 7.23 ST6 Compiler ODJECt SEItINGScccveiieeiiecee e 84
Table 7.24 ST6 Compiler Memory Model Settings..........cocovererenenienienenesesesesene 84
Table 7.25 ST6 Compiler Memory MOEIS.........cccovieiiniinineeee e 84
Table 7.26 ST6 Compiler Optimizer SElNGS........c.ooerveierererererese e 85
Table 7.27 ST6 Compiler Messages SEttiNgSccvevvereeiieereesee e e eseesreeseeeeeeseeas 85
Table 8.1 8051 Assembler SOUrce SELtiNGScveveeririrrieerie e 88
Table 8.2 8051 Assembler Listing SEttiNgSccovveieeieeiee e 89
Table 8.3 8051 Assembler Object SEttiNGS.......coovevrirrereeere e 90
Table 8.4 XA Assembler Source SEttiNgS.......cocvvvveieeree e e e 91
Table 8.5 XA Assembler Listing SEttingSccuecceeiieiee i 92
Table 8.6 XA Assembler Object SEttingS.......cccvvveeiieiie e 93
Table 8.7 ST6 Assembler Source SEttings........cooeveereiiererere e 9
Table 8.8 ST6 Assembler Listing SEttiNgS.......cccveoeeveereriie e 95
Table 8.9 ST6 Assembler ObJect SEttingSccoeveeriiererere s 96
Table 9.1 8051 LiNKer SEttINGS......cciveiieieierieseeeeereeseeseeesreesteeseeeeeesseesneeseeensee e 101

Getting Started with the Raisonance Development Kits

Table 9.2 8051 Linker Listing SEtiNGS.......cccueiiieeiieiie e eieeseecie e siee s sre e 101
Table 9.3 8051 Linker Bank Switching SEttingsccccvoererireriineeireeeeee e 102
Table 9.4 8051 Linker Flash SettingScccuviieiiieiie et 103
Table 9.5 8051 Linker Kernel SEttinNgScocooeeirerirereninieesesese e 104
Table 9.6 8051 Linker ROM-MoNItor SEttiNgS........cccoeiiveerieeniesieerieeseeseeesie e 105
Table 9.7 XA LINKEr SEEINGScvoovereeieiere ettt 107
Table 9.8 XA Linker RElOCation SELtiNGS........cccveiieiieieeeesee e 107
Table 9.9 XA Linker Kernel Settingscccoeiererirenenenereseses e 108
Table 9.10 XA Linker ROM-MONItor SEttiNgS.........covuviveereeninsieeieeseeseeeseeesee s 108
Table 9.11 ST LiNKer SELINGSc.coervereiririisieriese ettt 110
Table9.12 ST6 Linker Listing SEttiNgS.......cccoviierierieeniesie e 111

Page 6

Getting Started with the Raisonance Development Kits

Chapter 1. Introduction

The Raisonance 8051, XA and ST6 Development Kits are a complete solution to
creating software for the 8051 family, XA family and ST6 family of microcontrollers.
The Development Kits comprise many different tools that allow projects ranging from
simple to highly complex to be devel oped with relative ease.

Rai sonance has been devel oping embedded tools since 1988 and has built up many
years of experience. Y ou will find that with the Raisonance Devel opment Kits you can
rely on tools that have been tested by real users over along period of time.

This manual has been written to introduce the first time user to the Raisonance
Development Kits and guide them through many of the features available. With the aid
of this manual users should be able to quickly understand the tools, how they interact
with each other and how to start developing their own projects. This manual does not
cover the features in great detail or cover advanced features, but provides afamiliarity
to the tools that will provided a basis for using more complex features.

It is assumed that the user is familiar with Windows and has at least some familiarity
with the 8051, XA or ST6 microcontroller family and the C programming language.

This manual is organized into two main parts. The first part takes on atutorial form,
guiding the user through installation and the Windows front-end, demonstrating the
main features and ideas. The second part takes on areference form and provides
information about each of the toolsin turn.

In some places there are differences between the 8051, XA and ST6 tools and they will
be pointed out. To demonstrate the RIDE simulator an 8051 will be ssimulated,
however the smulator isidentical in all the Development Kits apart from the aspects
specific to the 8051.

Page 7

Chapter 1 Introduction

Development Tools

Thefollowing isalist of the tools included in the Development Kit with a short
overview of each one:

Tool Overview

ANSI C The C Compiler isan ANSI compliant compiler that takes source

Compiler files and generates object files. Extensions to the C language are
used to enable features of the microcontroller to be used or
controlled.

Assembler The Assembler takes source files written in assembler and

generates object files. Controls are included to enable features of
the microcontroller to be used or controlled.

Linker/Locator The Linker combines the object files generated by the Compiler
and Linker and produces a different kind of object file. The
Linker also decides where certain types of Data and Code are
located in memory.

Object-to-HEX The converter converts an object file generated by the linker and

Converter generates an Intel Hex file, compatible with most device
programmers.
RIDE The Raisonance Integrated Development Environment. RIDE isa

Windows program that allows the user to create projects, easily
call the Compiler, Assembler and Linker to build the project and
either smulate or debug the project.

Library The Library Manager can take object files generated by the

Manager Compiler or Assembler and create alibrary that isincluded in
other projects.

Monitor The Monitor is a program that runs on hardware and transmits

debugging information back to RIDE as the program executes. It
also provides a means of controlling the execution of the program
and debugging the program while it is executing on hardware

Table 1.1 Tools Overview

Page 8

Getting Started with the Raisonance Development Kits

Development Tool Names

Some of the tools have names by which they are often referred to. The table below lists
the names for each of the three tool sets.

Tool 8051 Tool Name XA Tool Name ST6 Tool Name
ANSI C Compiler RC-51 RC-XA RC-ST6
Assembler MA-51 MA-XA MA-ST6
Linker/L ocator LX-51 RL-XA RL-ST6
Object-HEX OH51XA OH51XA OHST6
Converter

Library Manager LIB-51 LIB-XA LIB-ST6

Table 1.2 Tool Names

RIDE (Raisonance Integrated Development Environment) is.common to all three tool
chains. Only the installation specifies which Microcontroller family is available.

Page 9

Chapter 1 Introduction

Conventions Used in this Manual

File| New Refers to the menu item “New” onthe File menu
whil e(1); (bdd, monospacel type) User input
filename Replace the italicized text with the item it represents.

[] Itemsinside[and] are optional.

Page 10

Getting Started with the Raisonance Development Kits

Additional Help or Information

Y ou may find additional documentation in the DOCS folder inside the RIDE
installation. In addition help is available via the Help menu in RIDE.

Also you can visit the following web sites:

http://www.rai sonance.com
http://www.amrai.com

North and South America:

Address: American Raisonance Inc.,
PO Box 1784,
Addison, TX 75001-1784
USA
Telephone: 1-877-315-0792
Fax: 1-972-818-0996
Email: info@amrai.com (General information)

sales@amrai.com (Sales)
support@amrai.com (Customer Support)

Rest of the World:

Address; Raisonance S.A.
755, Avenue Ambroise Croizat,
38920 Crolles, France

Telephone: +3347608 18 16
Fax: +334 76 08 09 97
Email: info@rai sonance.com

If you find any errorsin thismanual or omissions from it, or if you have suggestions
for improving this manual, please let us know by Emailing:

support@amrai.com

Page 11

Chapter 1 Introduction

Page 12

Getting Started with the Raisonance Development Kits

Chapter 2. Development Steps
The Relationship Between the Tools

The following diagram shows the relationship between the tools.

RIDE Editor I
.c file .ab1/.st6/

.axafile
Compiler I Assembler I

.0bj file .0bj file

lib file
v v

Linker/!ocator v I Library Manaqevr I

lib file

.aof file +

Object-HEX Converter I

.hex file

y

RIDE Simulator/Debugger I

1. RIDE provides an editor which allows the user to generate C sourcefiles (.c
extension) and Assembler source files (.a51 extension for 8051, .axa extension for XA
and .st6 extension for ST6).

2. Each sourcefileistrandated using the appropriate tool. The Compiler trandates C
source files. The Assembler trandates assembler source files. Each tool generates a
relocatable object file (.obj extension). If a project has more than one C source file or
more than one Assembler source file, then the Compiler and Assembler are executed
as many times as required.

Page 13

Chapter 2 Development Steps

3. If alibrary fileisbeing generated then the Library Manager takes all the relocaable
objed files and combines them into alibrary file (.lib extension). The library file may
then be linked in with ather projects.

4. The Linker/Locaor takes relocaable object files and library files and links them
together resolving external references. The Linker/Locator then locates variables and
code to specific addresses in the memory map. The Linker/Locaor generates asingle
Absolute Objed File (.aof extension). It also generates the same fil e with noextension.

5. The Absolute Objea File may then be used by the ssimulator or debugger in RIDE,
asthefile an contain debuggng information. Alternatively the Absolute Objed File
may be used with In-Circuit Emulators.

6. The Object-HEX Converter tod converts an Absolute Object File into an Intel HEX
file (.hex extension) which is arepresentation d the pure binary code generated,
withou debuggnginformation. The Intel HEX Fileis accepted by virtualy all device
programmers.

In addition to being an editor, simulator and debugger, RIDE also controls and
automates the entire build process. By seleding asingle menu item, RIDE will exeaute
the correct toolsto generate ather alibrary file or an Absolute Object File and Intel
HEX File.

NOTE

Eadh relocaable object fileisreferred to as a module. Each module must have a
unigue name. For example the source file foo.c generates the rel ocaabl e object file
foo.obj. The module name istherefore “foo”. However the source file foo.a51 also
generates the relocatable object file foo.obyj.

The result istwo modules with the same name. Therefore eab sourcefile must have a
unigue name, regardlessof whether it isa C source file or an Assembler sourcefile.

Page 14

Getting Started with the Raisonance Development Kits

Listing Files

Some of the tools generate text files, collectively referred to as Listing Files, in
addition to the files shown in the diagram. These listing files aid the user in
understanding how the tools processed the input files and in tracking down problems.

The Compiler and Assembler generate alisting file (.Ist extension) for each source file
they trandate. The listing file contains such information as the assembly code
generated, a symbol table, the memory requirements of the module and how the tool
was invoked.

The Linker generates alisting file commonly referred to as the Map File (m51
extension for 8051, .mxa extension for XA and .mst extension for ST6). Thisfile will
be referred to as the Map File in the rest of thismanual. The Map File contains alist of
input modules and libraries, amemory map of the project, a summary of the memory
requirements, a call tree and a symbol table. Only one Map File is generated as the
Linker isonly executed once.

Page 15

Chapter 2 Development Steps

Summary of File Extensions

The following table provides a summary of the file extensions used.

8051 File XA File ST6 File

Extension Extenson Extension

Project .prj prj .prj
Compiler Source File .C .C .C
Assembler Source File .abl .axa ast
Compiler and Assembler Object Files .obj .obj .0obj
Compiler and Assembler Listing Files st dst st
Linker Object File .aof .aof .aof
Linker Map File .m51 .mxa .mst

Intel Hex File .hex .hex .hex
Library File dib lib dib

Table 2.1 Summary of File Extensions

Note

The file extensions used may be modified or additional file extensions supplied. In
RIDE choose Options | Tools then select the relevant tool and click on Edit.

Fields are provided to enter the input and output file extensions.

Page 16

Getting Started with the Raisonance Development Kits

Chapter 3. Installing the Software
Minimum System Requirements

« Windows 95/98/NT/2000/Me

e Pentium Processor

e« 20Mb Hard Drive Space
e 32MbRAM

Installing the Software

If the software is being installed from CD then the installation program should
automatically run when the CD isinserted.

If the CD autorun feature is turned off or you have downloaded the software from a
web site then the software may be installed ssimply by running INSTALL.EXE.

Page 17

Chapter 3 Installing the Software

Directory Structure

Thefollowing is the directory structure placed into the installation folder
BIN folder

Thisfolder contains the executable files for the tools and associated library files
that are required by the tools.

DOC folder

Contains manuals for each of the tools as well as manuals for various evaluation
boards

EXAMPLES folder

Contains example projects for use with RIDE, including Monitor example
projects. The examples are subdivided into categories.

HELP folder
Contains the on-line help files used by RIDE.
INC folder (INCST6 for the ST6)

Containsinclude files that may be used by usersin projects. Some of the include
files define Special Function Registers for various derivatives. Include files for
the Standard C Libraries may also be found in this folder.

In addition source code for the Monitor (8051 and XA), some of the Standard C
Library functions, such as memory allocation (8051 and XA) and low-level 1/0O
and the startup code may be found in the Sources sub-folder.

LIB folder

Contains libraries that the Compiler and Linker/Locator may use in the compiling
of asourcefile or linking of aproject. The librariesinclude such things as
routines to perform mathematical operations on floating point numbers, the
Standard C Library functions and the Monitor (8051 and XA).

Page 18

Getting Started with the Raisonance Development Kits

NOTE

The Compiler will lookin the INC folder for header files INCST6 for ST6). If the
Specia Function Register Header File for the particular deviceyou are usingis not
present in the INC folder then you can easily create your own and place it in the INC
folder.

1. Find the header file of the devicethat is closest to the device you are using

2. Copy it and rename the copy to the name of the device

3. Using the device datasheet, add in the missing Spedal Function Register
declarations using the same format as shown in thefile.

4. Include the header filein you C sourcefilesinside “<” and “>", for example

#i ncl ude <reg999. h>

Page 19

Chapter 3 Installing the Software

Page 20

Getting Started with the Raisonance Development Kits

Chapter 4. Getting Started with RIDE
Overview of RIDE

It ispossible to create the source filesin atext editor such as Notepad, run the
Compiler oneach C sourcefile, spedfyingalist of controls, runthe Assembler on
each Assembler sourcefile, spedfying another list of controls, run either the Library
Manager or Linker (again spedfyingalist of controls) and finally runnng the Object-
HEX Converter to convert the Linker output fileto an Intel Hex File. Oncethat has
been completed the Hex File an be downloaded to the target hardware and debugged.

Alternatively RIDE can be used to crede source files, automatically compile, link and
convert using odions st with an easy to use user interface andfinally simulate or
perform debugging on the hardware with access to C variables and memory.

Unlessyou have to use the tools onthe cmmand line, the dhoiceis clear. RIDE
grealy ssmplifiesthe process of creating and testing an embedded application.

Projects

The use of RIDE centers on“projects’. What isa project? A project isalist of al the
source files required to build asingle gplication, all the tod options which specify
exactly how to build the goplicaion, and —if required — how the gplication shoud be
simulated.

A projed contains enouwgh information to take aset of sourcefiles and generate exactly
the binary code required for the application.

Because of the high degreeof flexibility required from the todls, there ae many
options that can be set to configure the tools to operate in a specific manner. It would
be tedious to have to set these options up every time the gplicaion isbeing bult,
therefore they are stored in a projed file. Loading the project file into RIDE informs
RIDE which source files are required, where they are, and hav to configure the todls
in the correct way. RIDE can then execute each tool with the correct options.

It isalso possible to creae new projedsin RIDE. Sourcefiles are alded to the project
and the tool options are set as required. The project can then be saved to preserve the
settings. The project also stores guch things as which windows were left open in the
simulator/debugger, so when a project is reloaded and the ssmulator or debugger
started, all the desired windows are opened.

RIDE project files have the extension .prj.

Page 21

Chapter 4 Getting Started with RIDE

Simulator/Debugger

The simulator/debugger in RIDE can perform avery detailed simulation of a
microcontroller along with external signals. It is possible to view the precise execution
time of asingle assembly instruction, or asingle line of C code, all the way up to the
entire application, ssmply by entering the crystal frequency.

A window can be opened for each peripheral on the device, showing the state of the
peripheral. This enables quick troubleshooting of mis-configured peripherals.

Breakpoints may be set on either assembly instructions or lines of C code, and
execution may be stepped through one instruction or C line at atime.

The contents of al the memory areas may be viewed along with the ability to find
specific variables. In addition the registers may be viewed allowing adetailed view of
what the microcontroller is doing at any point in time.

This chapter will highlight the main features of RIDE and demonstrate how they are
used.

Page 22

Getting Started with the Raisonance Development Kits

Starting RIDE

Starting RIDE is very easy. Select “Ride IDE” from the Start | Programs | Rai sonance
Kit menu.

Y ouwill be presented with the following splash screen:

N
‘e RIDE
Aﬁ"' RIDE £.1.1

_,-f'I Copyright® 1995-2000 R aizonance S54.
A&l Rights Resered.

RAISONANCE

Initializing debuggers ...

After afew moments the main window will open. The main window is described in
the next section.

Page 23

Chapter 4 Getting Started with RIDE

Creating a Project

Thefirst thing we will do is create a new project. We will then take alook at the main
RIDE window and become familiar with it.

Choose Project | New and you will be presented with awindow which looks like the
following:

@ New Project E3 |
M ame: rrizontraizonance verzsionsh8051 \stdlibhnoname. pri

Directony: b AB05T hatdlibh

Type: IBEIEE'I j

(1] LCancel | Browse | Help |

The Name field shows the path to the project file that will be created. The Typefield
shows the microcontroller family type the project will use. Depending on which
development kit you are using the Type field will show either: 80C51, XA or ST6. If
you are running the combined 51+XA development kit then you are able to choose
between the 80C51 and XA at this point. Remember whether you choose 80C51 or XA
asyou will need that information later on.

Click on the Browse button and browse to the folder where the project isto be created.
This manual will use the location:

C \wor k

In the Filename field the name of the project is entered. Enter t est . prj andclick on
the Open button then click on the OK button to create the project.

Page 24

Getting Started with the Raisonance Development Kits

The main RIDE window should now look like the following:

~@:RIDE - c:\work\test prj
File Edit Search Project Tool Wiew Debug DOption: WScrpt Window Help

|eBe: S

e | = 3¢ e

Project
and
Debugger
windows

Project |Debugger| IMake I Debug ~ Grep IScript I
1

SWORKATES T AQF {80

-

Toolbar
[—

Make,
Debug,
Grep and
Script
windows

| | [10 i

The Project window ads like aproject manager, showing which source fi
project and gvinginstant accessto each onein bah the alitor and debug

lesareinthe
ger.

If youlook at the Project window youwill seeone entry with the following pathname:

C. \ WORK\ TEST. ACF

This entry represents the project as awhole and the .aof file will be the result of

building the projed.

Note

The .aof file (Absolute Objed File) always takes its name from the name
project. In this case the project is called “ Test” so the .aof file will be all

of the
ed “test.aof”.

Likewise the generated Intel Hex File will aso be named after the projed (“test.hex”).

Page 25

Chapter 4 Getting Started with RIDE

Creating and Adding a Source File

The next step we will take isto create anew, basic sourcefile and add it to the projed.
The following section will show how to build the project. We will then know that all
the todls are working and you will then have astarting pant for all future projeds.

To create anew source file choose File | New followed by “C Files” from the pop-up
menu that appeas. A blank window will open.

Enter the following into the new window:
voi d mai n(voi d)

whi l e(1):
}

To save the sourcefile:

* ChooseFile| Save. A standard Save Aswindow will open.
« Enter mai n. ¢ into the Filename field.
« Click onSave.

To addthefile to the project:

e Sded”“C. \ WORK\ TEST. ACF” in the project window and pressthe right
mouse button (right-click). A menu will pop up

 Seled Add Node/Source Application from the menu.

e Seled main.c in the File Open window.

» Click onOpen.

A small “+” sign should appea next to the .aof filein the Projed window. Click onthe
“+” to expand the projed tree The source file shoud now appea in the Projed
window uncer the .aof file:

Fraject | Dehuggerl
R ———
EI----EEE C:MaOREATEST. ADF {20051} [L<51] code=0 external data=0 internal data=0.0
o[main.c [RC51] code=0 const=0 sdata=0 pdata=0 data=0 idata=0 bit=0

Page 26

Getting Started with the Raisonance Development Kits

Building the Project

To build the project smply click on the Make All button on the toolbar
Make All button

\
|ee = B | [

Or choose Project | Make All

S

Once the project has been built, the Make window will show the result of the build
process in tree form:

Mlake |Debug | Grep I Seript I

: Running BCE1 an o aorkvmain. o

----- Running L=51 on o work best. aof

EI Funning the tool c:ARIDE\ndehBintoh51+32.dll [HEX] on o hwarkskest. AQF
.4 GEMERATING STANDARD HEX FILE: C\wWORKATEST. HEX

Note

If the Compiler or Linker generated any warnings or errors then it would be possible to
view them in the Make window. In the case of Compiler warnings or errors, double
clicking on them in the Make window will take you to the relevant point in the source

code.

You have created and built your first project!

Page 27

Chapter 4 Getting Started with RIDE

Adding More Code

Before we take alook at the simulator we need to add some more @de. Simulating an
infinite loop is not very exciting, unless you happen to like infinite loops agred ded.

The Raisonance Compiler features language extensions that allow aspects edfic to
microcontrollersto be used in C. One of thase language extensions gives the aility to
declare Specia Function Registers (SFRs) so they may be read from and written to.

To save you from entering the SFR dedarations every time you create anew projed
they are commonly placed in header files, with one header file per derivative.

8051 Development Kit Users:

Enter the following line at the top d the main.c source file before the main function:
#i ncl ude <reg51. h>

XA Development Kit Users:

Enter the following line & the top d the main.c source file before the main function:
#i ncl ude <regxag3. h>

ST6 Development Kit Users:

Enter the following line at the top d the main.c source file before the main function:
#i ncl ude <st6201c. h>

All Users:

* Usingthe mouse seled just the filename of the header file (for example
“reg51.h"):

@_c:\work\main.c

#include -:: :[

roid main{woid)
r

Page 28

Getting Started with the Raisonance Development Kits

* Pressthe right mouse button and a menu will pop-up.
* Choose Open Document filename.

RIDE will find and open the header file you are including in main.c. Y ou can now
examine the contents of the header file to see how SFRs are declared using the
language extensions.

Note

For more information on header files please refer to the Header Files chapter.

Below the#i ncl ude add the following line:

unsi gned char counter = 0;

We are going to add two functions. Thefirst, called init, initializes atimer and the
timer interrupt. The second function, called timerisr, isthe Interrupt Service Routine
for the timer. The code for both these functions is different for all three microcontroller
families, so please refer to the correct section below for the tools you are using.

8051 Development Kit Users

Add the following code before the main function, but after the line you just added
declaring the counter variable:

void timerisr(void) interrupt 1

{
TFO = 0; /'l clear overflow flag
count er ++;

}

void init(void)

{
TMOD = 0x02; // 8-bit auto-reload tiner
ETO = 1; /1l enable timer interrupt
EA = 1; /1 global interrupt enable
TRO = 1; [l run tinmer

}

Page 29

Chapter 4 Getting Started with RIDE

XA Development Kit Users

Add the following code before the main function, but after the line you just added
declaring the counter variable:

void tinmerisr(void) interrupt 1 priority 15

{
TFO = O; /'l clear overflow flag
count er ++;

}

void init(void)

{
TMOD = 0x02; // 8-bit auto-reload tiner
| PAO = Ox70; // priority 15
ETO = 1; /1l enable timer interrupt
EA = 1; /1 global interrupt enable
TRO = 1; [l run tinmer

}

ST6 Development Kit Users

Add the following code before the main function, but after the line you just added
declaring the counter variable:

void tinmerisr(void) interrupt 3

{
TSCR &= Ox7f; // clear underflow flag

count er ++;

}

void init(void)

{

TSCR = 0x48; /1 timer interrupt enable, prescaler
/'l enable, divide by 1
| OR = 0x10; /'l gl obal interrupt enable

}

All Users:
Add the following line inside the main function, just before thewhi | e(1) ;

init();

Page 30

Getting Started with the Raisonance Development Kits

Save the source file by choosing File | Save or clicking on the Save button:

File Save button
/

El‘l

I:ll 10l

Build the projed by choasing Project | Make All or clicking onthe Make All button:

Make All button
\

“ ¢B B3 T3] \“TP E
Lo {]] Lo Yl [u][{[u]]

If “+” signs appear next to the Compiler or Linker itemsin the Make window, click on
the “+” sign to expand the tree and view the warnings. Doulde-click on the Compiler
warningsto jump to the relevant point in the source code and fix the problem.

S

Make ||:|el:.ug I Grep I Seript I

=M Running RC51 on cweork\main.c
: L WARNING C090 IN LIME 20 OF main.c : Call ta function init3" without pratotype
EII Running L=51 on o vwork stest. aof

.4 ERROR 100 : UNRESOLVED EXTERMAL SYMBOL : init3MaIM]

x|

I - LTI LT —

Onceyou have the project successfully built we ae realy to start the debugger.

Page 31

Chapter 4 Getting Started with RIDE

Starting the RIDE Debugger

The debugger isintegrated into RIDE and is one mouse-click or menu item away.

To start the debugger either choose Debug | Start test.aof or click on the Debug button:

- Debug button

BB E3
I"‘ 1.%”-:

Y ou will be presented with the following debug options window:

@ Debug Dptlions

— Tool:
 Mirtual Machine [Simulatorf —

" Real Machine [Emulatar ar BOM-Monitor] LCancel |

" Other Tool
Help |
— Microcontroller: Frequency:
Advanced Dptiu:unsl
5052 =1| | Ervstal (MH2) [12000

Click on the OK button and the advanced options window will open:

Application options E |

Code Size [kB] Im_
=D ata Size [kB] Iﬁ
D ata Offzet KB IW

[T Embedded BOM wersion

] Cancel |

Click on OK to accept the advanced options then click on OK in the debug options
window to accept those options.

Page 32

Getting Started with the Raisonance Development Kits

Note

Next time the debugger is started the debug options window will not open as you have
already confirmed that the options are correct. If you wish to change the debug options
either before starting the debugger or while debugging then choose Options | Debug.

The RIDE window should now look something like this:

"ﬁ:_'HIDE - ci\work\test. prj
Debug File Edit Search Project Tool View Debug Options ‘WScipt ‘Window Help

Toolbar |g2ecE

(= 1) “ o

f@_c:\work\main.c
EA=1: /¢ global interrupt enable

TRO = 1: JF run timer
! Debug
Deb_ugger ot sotaceonn Debug
Window | ¢ /
while(l):

4}

PT— A
roject Dlebugger Make Debug IGrep | Seript | /
i

. cworkhbest. aof - 0 Opening c:warkhtest. aof
i Chata dump -4 Opens file c:hworkbest.ag)
Dizaszembly code -4 Frequency: 12.000000 kHz
ode View o4 OMFS1 Module cworkitest aof has been successfully loaded.
i Hilata Wiew
x| = Ixg
| | T: 0:0:0 me.391 ps.0 s | 21:6 IS | MUM | CARS ¢

If you are currently not using the largest screen mode available to you then now might
be a good time to switch to it. The debugger features many windows that may be
opened.

There is apossible point of confusion over the window names in the debugger so both
windows will be described.

Page 33

Chapter 4 Getting Started with RIDE

The Debugger window shows atree view of select debugger windows that may be
opened by double-clicking on the time in the tree. The windows listed are memory
viewing windows and peripheral windows.

Froject Debugger

o hworkhtest, aof
ENEEE Data durnp
E ------ wnm Dizazzembly code
------ Wl Code Wiew
------ e Hdata Wiew

ol o DaaView]

L ———— -

Doule-click on the “DataView” item. A window will open showing the cntents of
memory (in this case Data memory)

g Data [test] =]
O0: 00 00 00 OO0 00 00 00 OO0 . + o o v v . . -
OE: 00 00 00 OO0 00 00 00 OO0 . . o o v v . .

0: [oo oo oo oo oo oo oo L.

15: 00 00 00 00 00 00 00 00 . & & & & &

Z0: 00 00 00 00 00 00 00 00 . & & & w4 oo

Z28: 00 00O 0O OO0 OO0 0O o000 00 & . . 0

30: 00 0o oo OO0 00 00 o0 00

38: 00 00 00 00 o0o 00 600 Q0 . oL

40: 00 00 00 0o 0o 00 00 Q0 . oL

45: 00 00 00 00 00 00 00 00 . . & 4 o« o« . o ;I
Search : ||:|:|unter | coutter at 10 Al

The memory is shown in rows of eight bytes, first in hexadecimal and then in ASCII.
If the ASCII equivalent is a charader that canna be displayed then aperiodis
displayed instead.

Static variables may be searched for smply by entering the variable name in the search
field. Try entering

count er

and pressing return. A memory location will be highlighted indicating where the
variableis gored.

Page 34

Getting Started with the Raisonance Development Kits

Other features of the Data view are the ability to set write and read accessbregpoaints
(execution will stop when the memory locationis written to or read from) by clicking
onthe*W” and “R” buttons.

Pressing the right mouse button over the Data view window opens a pop-up menu that
provides the following functions:

* Associate amemory location with a symbol

* Associate amemory location with afunction generator
* Change the number of bytes shown per line

» (o to aspecific address or symbol

e Fill memory with avalue

» Toggle write and read breakpoints

Double-clicking on a memory location in the window allows the value at that location

to be modified.
a0 0C
I:II:
00 . 0C

oo Pa

Close the Data View window, but make sure that no write or read breakpoints have
been set and that any memory locations that you modified are set back to their original
values.

The Debug window shows messages that relate to the debug session. For example if
you stop and start the simulation a message will appear for each, complete with atime
stamp.

Mlak.e Debug |Grep I Script I
—]

e # Upening o hwwarkhtest, aof
------ # Upeng file oworkhtest. aof
-4 Frequency: 12.000000 MHz

4 OMFS51 Module c:\wark\test aof has been successfully loaded.

Page 35

Chapter 4 Getting Started with RIDE

The blue bar in the source code window indicates the current execution point. It
highlights the next piece of code to be executed. The Compiler automatically includes
some startup code (written in assembler) that is executed before the main function is
reached. When you start the debugger it automatically executes the startup code and
stops at the first line in the main function. If you look at the status bar at the bottom of
the RIDE window you will see atime displayed:

L 1 JE

| | T: 0:0:0 e 391 pe0ns
b-f 3 f 3 f 3 [3 .32 [3 I

Thisisthe current execution time so far. Asthe only code that has been executed isthe
startup code, this time shows how long the startup code took to execute.

Note

During a simulation the debugger will bring the source code window to the front. If the
source code window is maximized or covering other windows then it will not be
possible to view those other windows. We recommend that you do not maximize the
source code window and that you drag it out of the way when you want to view other
windows.

Enough of the window descriptions, lets watch the code be simulated!

Y ou may have noticed the large GO button on the toolbar. It will come as no surprise
to learn that clicking on the GO button will start the ssmulation. Do that now.

GO button

Two things indicate that the ssmulation is taking place: periodically the execution time
at the bottom of the RIDE window will update and the GO button has changed into a
STOP button:

STOP button
[>T @ £ BBt et o test AN [~ St o0 H"% ‘

Click on the STOP button to stop the simulation.

Page 36

Getting Started with the Raisonance Development Kits

Using the painter, highlight “counter” in the source mde window then hover the
pointer over the highlighted “counter” text for amoment. A tooltip will appear
showing the aurrent value of the variable counter in hexadeamal:

i
TFO = 0; A7 clear

} caunter; OxAF

roid init{woid})

Boh W kW

ki

This may be used for any identifier in the source code window. Try it for the SFR TFO
and a function name.

Page 37

Chapter 4 Getting Started with RIDE

Breakpoints and Measuring Execution Time

To the left of each C sourceline that generated code (and therefore was not optimized
out) agreen da appears.

Set a breakpoint onthefirst line of the timer Interrupt Service Routine by clicking on
the green da. The dot will turn red withan“S’ inside it and ared bar will highlight
the sourceline.

unsigned char counter = 0;

0id timerisr{woid) interrupt 1

{

Pomow 3

TFO = 0; A clear overflow f£lag

R —— - . -

Click on the GO button. The simulation will stop almost immediately. If you look at
the debug window a message will indicate that the breakpoint was reached:

Mlake Debug IErep I Script I

------ # [T:0:18:374 m=.640 pz.0nel Stop
e [T 18374 me. 840 pe 0 nzl Run

— [PC:21 . T: 01835 me 40 pz.0ns] Stop at Breakpoint =
| »

We are going to measure the time between interrupts. Choose Debug | Reset Time and
note that the current execution time shown at the bottom of the RIDE window has been
reset to zero:

N | T: 0:0:0 mz0 pe0 ne
3 .y 0.3 0.3 .3 [3

Now click on the GO button to execute up to the start of the next interrupt. The
execution time between interrupts will now be shown at the bottom of the RIDE
window.

Page 38

Getting Started with the Raisonance Development Kits

Note

Using breakpoints and resetting the execution time makes it possible to measure the
time to execute any piece of code, including parts of functions or the whole
application, aswell as verifying if you have correctly configured atimer to generate
interrupts at a specific rate.

Page 39

Chapter 4 Getting Started with RIDE

Setting Watchpoints

Don't remove the bre&point just yet.

Rather than highlighting the wurter variable to seeits value it would be useful if the
value was always fiown onthe screen. To dothat we need to add the curter variable
to the Watch window.

* Open the Watch window by chocsing View | Watch.

e With the painter over the Watch window pressthe right mouse button.
e Chocse Add from the menu that pops up.

e Enter count er into the expressionfield.

P <

E spression:

k. Cancel Help |

¢ Click on OK

The Watch window will now show the current value of the counter variablein
decimal, with the hexadecimal equivalent in parentheses.

B ;OB 4 WY WF DD Ry

B Watch [test] =] k9

| M ame

counter

Click on the GO button to run to the next breakpoint. The value of counter will
increment and turn red. The value turns red to indicate that it has changed, and
therefore draws attention to itself.

Page 40

Getting Started with the Raisonance Development Kits

Simulation Animation

It'sasfunto see the simulation animate asit isto say the title of this ®dion.

First remove the breakpoaint by clicking onthered da withan“S’ insideit. The red
bar will also disappear.
Choose Debug | Animated Mode or click onthe Animate button.

Animate button

3Gt o et <] B0 9 4 |

Finally click onthe GO button.

Every oncein awhile the blue bar will move to the Interrupt Service Routine, visit
each source lineinside the ISR in turn then return to thewhi | e(1) . At the sametime
the value of counter will increment in the Watch window.

In the Debugger window, scroll down to thelist of peripherals and doulbe dick on
“timer” or “timerQ”, The timer peripheral window will open with the value of the timer
count register constantly changing as the execution progresses. The screen shot below
isfor the 8051 timer so the one you see may look dfferent.

@ Timer l] ;IEIEI
THLO [004D I
TMOD 02

TCOM

10
TF0 [0 TRO[1

Function: timer.

State: on

Mode: 2. 8-bit reqg. [TLO) with
autarnatic reload of THO in TLO.

Stop the ssimulation by clicking onthe STOP button and either chocse Debug |
Animated Mode or click on the Animate button to turn the animate mode off.
Y ou can aso close the timer peripheral window.

Page 41

Chapter 4 Getting Started with RIDE

Stepping Through Code

The RIDE debugger makes it possible to step through the simulation, one source line
at atime or one instruction at atime.

Set a breakpoint on the first line of the Interrupt Service Routine by clicking on the
green dot.

Green Dots

ool Cimerisr{woid) interrupt 1

& TFO = 0; A clear overflow f£lag

R —— - . -

Click on the GO button to simulate up to that line.

To step through the source lines one at a time choose Debug | Step Into or click on the
Step Into button:

Step Into button
JE e f *"@mm =1 G0 = [|

The blue bar will move onto the next source line on each press of the button or
selection of the menu entry. At the same time the current execution time shown at the
bottom of the RIDE window will increase.

Click on GO to execute up to the ISR again.

To view the assembly code equivalent of the C source code open the Disassembly
window by choosing View | Code or clicking on the Disassembly button:

Disassembly button

YOO e @ Jest o B e e |

Page 42

Getting Started with the Raisonance Development Kits

The disassembly window will look something like:

T
_§ Code [test) =] S
|.»'%|:|dress |S¥rbol [Code [Mnermonic |Code Cl:||
TFO = 0; A4 clear owerflow £lag -

CLE TFO

#% o counter+;

N0=Z3: 0505 INC counter 7313
N0&25: Dopo POP PIW 7313
n0z7: DOED POF ACC 7313
[2 1

nnza: 3Z FETI 7313
[##_13 THOD = Ox0Z2; ¢/ G-bit auto-reload timer

D0EA: init T3ER0E noy THMOD, #02 1

NPT . TZig SFTR FTN 1 ll
Semch:l |

Source code lines are shown in purple, with the assembler equivalent immediately
below.

When the Disassembly window has the focus (the title bar is not gray), performing a
Step Into will step through assembly code.

When the source code window has the focus, performing a Step Into will step through
C source code.

Open the Register window by choosing View | Main Registers, then repeatedly press
the Step Into button and watch the bar move and the registers change accordingly.

Even if the Disassembly window has the focus you can click on the GO button to
execute up to the next breakpoint.

When you are finished close the Disassembly window and remove the breakpoint.
Also close the Register window as well.

Either choose Debug | Terminate test.aof or click on the debug button to end the debug
Session.

Debug button

[SSeER >

B E @f“ |:
‘E; E% III 10 mln o1

Page 43

Chapter 4 Getting Started with RIDE

Note

When simulating more complex applications sometimes clicking on the STOP button
appears to have no effect. However if you wait for a short while the disassembly
window will open and a Break button will appear on the toolbar. If you wait some
more then eventually the simulation will stop.

This appears to be abug but it isnot. Y ou tried to stop the simulation while the
debugger was in the middle of alarge block of assembly code that corresponded to the
current C source line. Typically the assembly code will be library routines such as
printf. The debugger recognized that it would take some time to smulate all the
assembly code and reach the next C source line so it opened the disassembly window
for you at the current execution point in the assembly code. The Break button is
provided to allow you to stop the simulation immediately in the assembly code, rather
than wait for the next C source line to be reached.

If you do not like this behavior of the simulator then identify the C source lines that
take some time to execute and set a breakpoint on the following lines.

Page 44

Getting Started with the Raisonance Development Kits

Final Code Additions

In order to show a couple of useful features of the debugger we need to make some
additions to our code.

Changetheline:

unsi gned char counter = 0;

To:

unsignedc harc ounter=0 ,t oggler=0

Just below count er ++; inside the timerisr function, add the following line:
toggler=0 xFF - toggler;

Save thefile by clicking on the Save button and rebuild the project by clicking on the
Make All button

Save button Make All button
/
PEn s e >

If there are any errors or warnings go back to your source code and fix them.

e

Page 45

Chapter 4 Getting Started with RIDE

Tracing and Displaying Waveforms

The RIDE debugger has the ability to graphicdly display waveformsrelating to a
microcontroller pin or avariable. This allows the relationship between variables,
inpus and ouputsto be dearly shown.

Start the debugger by choasing Debug| Start test.aof or by clicking onthe Debug
button.

Open the Watch window by choasing View | Watch.

With the pointer over the Watch window pressthe right mouse button and choose Add
from the menu that pops up.

In the expression field enter

t oggl er

Andclick onOK. Togder shoud appear in the Wach window.

Seled togder in the Watch window so it ishighlighted in blue and presstheright

mouse button again. Thistime seled Add/Delete from Trace List from the menu that
pops up. A small “T” inacircle will appea next to togder in the Watch window.

B Waltch [test) =] E3

M ame W alue

counter O [(Ox0)

Btogoler |0 (0x0)

Page 46

Getting Started with the

Raisonance Development Kits

Choose View | Trace | Options. The Trace Options window will open and look like:

eeTace |

Trace | Wigwm I

Extended Modes

— Mode
i " Continual ' Flashing
" OnChanges ¢ Toggling 1 Eriended

¥ Fuoling race
I= | Trace only source lines

™ Reset trace list befiore run

b &ximum number of records: |1 i

[~ Record listin a text file

File: |

ok I Cancel |

Help |

Seled “On Changes’ and in the Maximum Number of records field enter

50

Click onOK.

To open the Trace window chocse View | Trace| View.

dt | PC | Saource | tagaler

| = [0] x|

AT T T ETITI I

Click onthe GO button to start the ssimulation and alow it to runfor a few moments
before stoppngit by clicking onthe STOP button.

Page 47

Chapter 4 Getting Started with RIDE

The top part of the Trace window will now show the trace records for the last 50
changes of toggler:

fRTacetiesy R]
| Hmin:z.... | dt | FC | Source | toggler |
:00:36.5100:00:00, 256 002C POPF PO O0xFF ﬂ
i t00:36, 766 0:00:00, 256 002C POR PR =0
i0:00:57.022/0:00:00. 256 002C POF P2W O0xFF

s00:37.2780:00:00, 256 002C FOP PO Ox0

t00:37.5340:00:00. 256 002C POPF PBW O0xFF LI

W O TTIT R

Y ou can scroll throughthe tracerecords. The clumns are:

t The simulationtime
dt The dhange in simulation time between the records
PC The Program Counter at that paint

Source The source code to be exeauted at that point
togder The value of togder at that point

Because we seleded the “On Changes’ option, records are only generated when the
variables being traced (in our case togder) change.

To view awaveform of toggler click onthetitle button d the togger column

toqaler

0xFF h
=0
OxFF

Marn

The lower part of the tracewindow will show a square wave as toggler changed
between OxFF and Ox@.

MrUU Sy oddl UL UL, LobjUulEL ruy raou uxry

i

toggler

0:00:37 500 0:00:40.000 0:00:42 500 0:00:45.000 0:00:47 500

Page 48

Getting Started with the Raisonance Development Kits

It is possible to zoom in on the waveform by dragging a box around the area of
interest. Timing information is shown along the bottom of the window.

s DGl SA0DUUAL rur raw L

1
0:00:37.790, 0:00:40.094] [

| P o

0:00:37 500 (0000 40.000 00042

Pressing the right mouse button while the point is over the waveform will zoom out to
the original view.

The trace records may be saved as atext file. Press the right mouse button over the
trace records and choose Save As from the pop-up menu.
Browse to the desired folder and enter the filename. Click on Open to save.

Page 49

Chapter 4 Getting Started with RIDE

Generating Waveforms on Pins

The RIDE debugger makes it easy to generate waveforms on a specific pin of the
microcontroller being simulated. Using function generators the program may be tested
with external input stimuli.

Choose View | Function Generators followed by Options from the pop-up menu. The
function generator main window will open.

Function Generator |

Cloze

E dit

Hew

Delete

Help

Click on New to create a new function generator. The Function Generator Options
window will open.

MB1 |

— Function bppe

" Wave Form % Expression Sampling

— Expression to evaluate:

— Returned type
¥ Boadlean ™ Char ™ wiord

— Evaluation Frequency(kHz]:

{1.000000

Ok I Canicel Help

Page 50

Getting Started with the Raisonance Development Kits

In the Name field enter

square wave

Select the Wave Form option.

In the Expression to Evaluate field enter
(L100U, H200UV)

and click on OK. Thiswill create afunction generator that generates a square wave,
low for 100us and high for 200us.

Click on Close in the function generator main window.

The function generator needs to be attached to a microcontroller pin, and that is
achieved using a netlist. A netlist isaform of representing electrical circuits by giving
each connection (called a node) a unique name, then specifying what is connected to
the node.

Choose View | Nets. You will be presented with the Nets window.

I ame Connections

Benarme

Delete

1

r— Ping and Function Generator.

—Awalable———————————— — Connected

test.PO.O -

test. P01

test.PD.2 ?
test.PO.3 R

test.PO.4
test. P05
tezt PO.G
test. P07 <
test.F1.0
test.F1.1

test P12 d|
Cloze | Help I

Click on New to create a new node. NetO will appear in the Net List area.

Page 51

Chapter 4 Getting Started with RIDE

8051 and XA Users

Find test.P0.0 in the Available list, select it and click on the “>” button. Test.P0.0 will
appea on the right side in the Connected list to show it is conneded to the node.

ST6 Users

Findtest.PBO in the Available list, select it and click onthe “>” button. Test.PBO will
appea on theright side in the Connected list to show it is conneded to the noce.

All Users
Find square wave in the Available list, seled it and click on the “>” button. Square

wave will appear on the right side in the Conneded list to show it is conrected to the
nock.

Connected

test PO.O
FOLAME Wave

Click on the Close button to close the Nets window.

Having awaveform on a pin is no good unless we can view it. We therefore need to
add the pin to the watch window.

With the pointer over the Watch window press the right mouse button and choose Add
from the pop-up menu.

8051 and XA Users

In the expression field enter:
PO. O

ST6 Users

In the expression field enter:

PB. 0

Page 52

Getting Started with the Raisonance Development Kits

All Users
Click onOK.
Seled the pin in the watch window so it is highlighted with a blue bar and pressthe

right mouse button. Chocse Add/Delete from TraceList. A small blue“T” ina drcle
will appear next to the pin name.

counter 190 [(OxEBE)
Ttoggler O (Ox0)

FALSE

Start the simulation by pressing the GO button and alow it to run for a short while,
then stop the ssimulation by pressing the STOP button.

The trace records in the Traae window will now have a @lumn for the port pin, with
entrieseither “TRUE” or “FALSE”.

[
toggler FO.0

0xFF TRITE

0xFF FALZE

0xFF TRUE

=0 TERIE

=0 FALZE
|

Press the togder column title button followed bythe title button of the port pin column
to dsplay the waveforms of bath.

F:DD:lSD.DE O:00:00, 1000008 JTMP 0006 Ox0 FAL3E j

FO.0

toggler

0:00: 130,000 0:00:1:31.000 0:00:132.000 0:00:1:33.000 0:00:134.000

Page 53

Chapter 4 Getting Started with RIDE

Y ou can zoom in to obtain a closer view of the waveforms.
Additional Things to Try

Add another variable to the code which is OxFF only when toggler is OxFF, and the
port pin is high, otherwise it is 0x00.

Add the variable to the watch window and trace it to see its waveform.

Page 54

Getting Started with the Raisonance Development Kits

Chapter 5. Compiler Listing and Linker Map
Files

This section isintended as a brief introduction to the Compiler listing file and the
Linker map file. For amore detailed examination of the file contents please refer to the
Compiler and Linker manuals.

Understanding the Compiler Listing File

Choose View | Listing from Compiler. A window will open showing the listing file
(.Ist) generated by the Compiler when it processed main.c.

The Compiler listing fileis very useful in understanding what the Compiler did. The
listing file contains six consecutive pieces of information.

Command Line Invocation

This information shows exactly how the Compiler would be called from the command
line to obtain the exact same result. Thisinformation is very useful if you want to
relate the Compiler optionsin RIDE with the command line options, or for better
understanding how the command line version of the Compiler is used.

Source Code

A listing of the input source code isincluded in the listing file. Each line is numbered
and source lines that actually generated code have a second number which relatesto
the nesting level of the code.

It is possible to change how this section looks and include the source code from header
files by changing the compiler options.

Generated Assembler Equivalent

The assembly code generated by the compiler islisted to indicate exactly what the
compiler did when it processed the source code. This section is useful for tracking
down bugs in source code and understanding better how the compiler works.
Throughout the assembly code there are comments like:

; SOURCE LINE # 8

The assembly code immediately following the comment relates to that source code
line, which may be found by looking for the line number in the Source Code section of
thelisting file.

Page 55

Chapter 5 Compiler Listing and Linker Map Files

The assembly code is divided up into functions.
Symbol Table

The symbol table lists all the static variables and functions that were found in the
source file. For each one variousinformation is listed.

Module Information

The module information table gives a summary of the memory requirements of the
module. Some memory may be overlaid.

Errors and Warnings
Thefinal piece of information given in the listing file is a summary of the number of

warnings and errors that were generated by the compiler. Note however that it does not
list the actual warnings and errors.

Note
Y ou may have noticed at the start of the listing file aline that looks like:

QCW 0x00002D32)

The hexadecimal value isthe internal compiler representation of most of the compiler
options. Thisvalueisfor internal use only and aids Raisonance in supporting
customers, so you can safely ignoreit.

Page 56

Getting Started with the Raisonance Development Kits

Understanding the Linker Map File

Chocse View | Map Report from Linker. A window will open showingthe Map File
(.m51for 8051, .mxafor XA and.mst for ST6) generated by the Linker when it
processed all the objed filesin the projed.

The Linker Map Fileisinvaluablein understanding what the Linker did. It is probably
the most useful pieceof information generated by the tools and understanding the
contents will vastly improve the chances of a project’s siccess. Indeed, without
understanding it many projects will never work. The listing file contains eight
consecutive pieces of information (nine for the ST6).

Command Line

Thisinformation shows exactly how the linker would be cdled from the cmmmand line
to dbtain the exact same result. Thisinformation isvery useful if youwant to relate the
linker options in RIDE with the command line ogtions, or for better understanding
how the command line version of the linker is used.

Memory Model

This sction shows the memory model that was used for the project. Thisis useful for
double-checking that the intended memory model was used.

Input Modules

A list of al the input modulesis given. The inpu modules include the modues
generated by the sourcefiles, plus any library modules if required.
After the path to ead module, the modue nameis given in parentheses.

Link Map

The Link Map is the memory map of the projed and shows exadly where every piece
of code and data was located.

The memory map is given as atable, divided into the various memory areas supported
by the microcontroller.

Ead sourcefileisdivided upinto segments. All the code in afunctionwill be placed
inasinge segment. All the static DATA variables will be placed in another segment.
All the static IDATA variables will be placed in yet another segment.

Ead linein the link map is one segment, showing where it was located and hav big
the segment is.

Page 57

Chapter 5 Compiler Listing and Linker Map Files

Function segment names are given the following format:
memor ytype?functionname?modul ename

Data segment names are given the following format:
memor ytype?modul ename

Some specia segments do not follow the above formats.

More information on segment names may be found in the Compiler and Linker
manuals.

Using the Link Map you can quickly and easily see which regions of memory your
project uses and how much memory your project uses. Also you can seeif you
configured the Linker correctly to use only specific regions of memory.

Executable Summary

The executable summary gives the total memory usage for each of the various memory
areas, excluding dynamic memory requirements such as the stack.

Reference Map

The reference map shows which executable segments call other segments. Thisis
useful in determining if the linker correctly figured out such things as indirect function
cals.

Symbol Table

Every variable, function and code line are listed in the symbol table along with the
address they were located at and their type. Thisis very useful when using the
debugger as you can look up the location avariable is stored at then watch that
location during the simulation.

Project Call Tree (ST6 only)

The Project Call Treeisan analysis of the stack usage by the project. The ST6
supports only six stack levels and the linker makes an attempt to determine if the
project will go over the six level limit. This section indicates what the linker did to
work out the stack usage of the project.

Page 58

Getting Started with the Raisonance Development Kits

Errors and Warnings

Thefinal piece of information gven in the map fileis a summary of the number of
warnings and errors that were generated by the linker. Note however that it does not
list the actual warnings and errors.

Note

Sometimesit will appear that a variable has been omitted from the symbad table. This
isn't abug but an indication that the variable was optimized out and therefore is nat
present in the .aof file. Y ou cannot therefore watch that variable in the debugger.

If you reed to seethe variable then try declaring the variable as “volatile’. The volatile
keyword will instruct the Compiler to avoid performing optimizations onthe variable.

vol atil e unsigned char foo;
Note however that using the volatile keyword will change the ade generated and

therefore may nat behave in quite the same way as the fina version without the
volatile keyword.

Page 59

Chapter 5 Compiler Listing and Linker Map Files

Page 60

Getting Started with the Raisonance Development Kits

Chapter 6. Header Files

Each tools installation contains a set of pre-written header files that declare Special
Function Registers for many derivatives of the microcontroller family you are using.

Each header file is specific to a particular derivative, however it is easy to generate
your own header filesif you find that one for the derivative you are using is not
included.

Follow the steps below to generate your own header file.

1. Find the header file of the device most similar to the one you are using.
Alternatively find the header file of the most basic derivative. For example for the
8051 it would be reg51.h.

Header files are stored in the INC folder in 8051 and XA installations and the INCST6
folder in ST6 installations.

2. Make acopy of it in the same folder and rename the new file to the name of the
derivative you are using, following the same naming format at the other header files.

3. Open the header file in RIDE or atext editor such as Notepad.

4. Using the table of SFRsfrom the datasheet of the device you are using, simply enter
the missing SFRs following the same declaration format:

at address sfr nane;
for example on 8051s the SFR PO is located at 0x80, so it is declared as:
at 0x80 sfr PO;

The 8051 and XA also allow declarations of individual bitsin the bit-addressable
SFRs. They are declared using the following format:

at address shit nane;

where the address is the address of the SFR which contains the bit plus the bit position.

Page 61

Chapter 6 Header Files

For example:
Address Correspondsto
0x80 Bit 0 in the SFR at 0x80
0x81 Bit 1 in the SFR at 0x80
0x83 Bit 3 in the SFR at 0x80

Table 6.1 SFR Bit Addresses
So bit 1 in the SFR at 0x80 would be declared as:
at 0x81 shit FOG,
Asyou can seg, it is quick and easy to generate your own header files.

Once generated you may include them in the C source code in the usual manner. For
example:

#i ncl ude <nydevi ce. h>

Page 62

Getting Started with the Raisonance Development Kits

Chapter 7. Compiler
Changing the Compiler Settings in RIDE

With aproject loaded into RIDE the Compiler options for the project as awhole may
be accessed by choosing Options | Project then expanding the tree for the Compiler
and clicking on the various sections. The following screenshot is for the 8051.:

Oiptiors: — Memaom model
 Tiny & Small

" Compact Large ™ Huge

[+ Errvironment

- Directories

= RCST — External stack
SDU'FE . [T Use extemal stack
- Floating point -
... Code generation Special features
 Defines I Component with 3Fak (Bhilips BxC592, 8xC528, ..
- Ligting —Advanced features
- Object * More
= hernor Model = Philipz Component with Dual DPTR [E9CE1R02 like)
Hegis_ters " Dual DPTR DallasdamD
-~ Optimizer " Dual DPTR ATMEL
- Meszsages " 807

[MAST r |l eeaad fiatal o sta meEihtens

- L1

[| [Use the anthmetic prosessar

Defaults | Cancel | Help |

Once al the options have been set up accordingly click on OK to confirm them.
The Compiler options may also be set individually for each source file in the project:

* Inthe Project window select the source file whose options you wish to change

* Pressthe right mouse button.

* From the pop-up menu choose Options | Local Options. A window will open
allowing you to change the Compiler options for that source file.

Page 63

Chapter 7 Compiler

8051 Compiler Options Overview

The following Compiler options are grouped by sedion, aslisted in the Options
window.

Where there ae two dredivesfor an option, the first directive is the one used with the
option selected. The second directive is the one used when the optionis not selected.
In some caes the lack of adiredive seleds the default setting, which isindicated by
(nore).

Source

Option Description

ANSI C Strictly ANSI C only alowed. No language extensions.
Diredive: NOEXTEND

80C51 Specific ANSI C pluslanguage extensions allowed.

Language Diredive: EXTEND

Extensions

‘struct/union/enum’ Allows the struct, union and enum keywords to be omitted

optional when declaring structures, unions and enumerators in certain
situations.
Diredive: SUE_OPT

Table 7.1 8051 Compiler Source Settings

Page 64

Getting Started with the Raisonance Development Kits

Floating Point

Option Description

No floating pant No floating pant variables are allowed in the
project.
Diredive: FRINOFLOAT)

|[EEE: Standard Allows sngle-predsion floating pant numbers

(IEEE754) —little endian
Diredive: FIEEESTANDARD)

|IEEE: Reversed (251 compatible) Allows sngle-predsion floating pant numbers
(IEEE754) — big endian
Diredive: FR(IEEE,FP251)

BCD: All types Allows 32-hit, 48-hit and 56hit floating pant
numbersin BCD format.
Diredive: FR(BCD,ALL)

BCD: “float” only Allows 32-hit floating point numbersin BCD
format.
Diredive: FR(BCD.FLOAT)

BCD: “doulde” only Allows 48-hit floating-point numbersin BCD
format.
Diredive: F(BCD,DOUBLE)

BCD: “long douole” only Allows 56-hit floating-point numbersin BCD
format.
Diredive: FRBCD,LONG)

Table 7.2 8051 Compiler Floating Point Settings

Page 65

Chapter 7 Compiler

Code Generation

Option Description

Enable ANSI Integer If selected charswill be promoted to ints before

Promotion Rules comparison. This does not generate optimal code on 8-bit
microcontrollers such as the 8051, but isincluded for ANSI
compliance.

Directive: IPPNOIP
Stack Automatic With this option on all automatic variables will be located
Variables on the stack rather than in fixed memory locations. The

result is reentrant but larger code.
Directive: AUTO/NOAUTO

Initialize static Includes startup code to initialize non-initialized static
variablesto zero variablesto zero. Thisis asafeguard that can be used
against uninitialized variables.
Directive: ISNOIS

Generic When selected all non-memory specific pointers are
generic pointers. When not selected, non-memory specific
pointers point to the default memory space for the current
memory model.

Directive: GENERIC/NOGENERIC

Unsigned characters ~ When selected chars are converted to unsigned chars.
Directive: UNSIGNEDCHAR/SIGNEDCHAR

Table 7.3 8051 Compiler Code Generation Settings

Note

With the generic option turned on the following pointer declaration resultsin a pointer
that can point to any memory space, however the code to manipulate the pointer is
large and involveslibrary calls:

unsi gned char *foo;

With the generic option turned off the same pointer declaration resultsin a pointer that
points to the default memory space for the current memory model (such asDATA in
the Small memory model), however generic pointers can still be declared using the
generic keyword, for example

unsi gned char generic *foo;

This makes turning the generic option off the best setting to use, however be aware of
the effects.

Page 66

Getting Started with the Raisonance Development Kits

Defines

This section allows you to enter identifiers that are defined for such things as
conditional compilation.
Directive: DEFINE(text)

Listing
Option Description
Generate listing If selected a.Ist listing file will be generated
Directive: PR(filename)/NOPR
Show lines omitted If selected then the source code listing in the listing file will
from compilation include files that were not involved in the compilation
Directive: CO/INOCO
Display the contents If selected then the contents of the include files are inserted
of theincludefiles into the source code listing in the listing file
Directive: LC/(none)
Generate If selected then a separate file will be generated showing
Preprocessor listing macro expansions
file Directive: PP(filename)/(none)
Append assembly If selected then the compiler generated assembly code will
mnemonics list be included in thelisting file
Directive: CD/NOCD
Generate alist of If selected then a symbol table will be included in the
symbols listing file
Directive: SB/INOSB
Insert form feeds at If selected then form feed control characters will be
the end of pages inserted into the listing file
Directive: PL(lines)/(none)
Number of lines Specifies how long apageis
printed per page Directive: PL(lines)
Number of characters Specifieshow wide alineis
printed per line Directive: PW(characters)

Table 7.4 8051 Compiler Listing Settings

Page 67

Chapter 7 Compiler

Object

Generate an assembler
sourcefile

Generate an oljed file

Debuggng information—
noinformation

Debuggnginformation—
Standard

Debuggng information—
Extended

Debuggnginformation—
Extended 1997 version

Generate interrupt veaors

Interval for interrupt
vectors

Offset for interrupt
vectors

Option Description

The compiler will generate a.src filewhichisthe
complete assembler equivalent of the C source mde.
The .src file may be assembled by the assembler.
Diredive: SRC

The compiler will generate arelocatable objed file that
make be linked with ather object files
Diredive: OBJECT (filename)

No debuggnginformationwill be included in the
objed file.
Diredive: NODB

Includes basic debuggnginformationin the object file,
compatible with the original Intel OMF-51
spedficdion.

Diredive: DB

Includes extended debugging information in the object
file, including type information.

Diredive: OE(1)

Includes yet more debuggng information in the object
file, including the temporary locations of automatic
variables when located in registers.

Diredive: OE(2)

The compiler will generate interrupt vedors
automatically for interrupt functions

Diredive: INTVECTOR(offset)/ NOINTVECTOR

The number of bytes between interrupt vedors
Diredive: INTERVA L (bytes)

The vector for interrupt zero will be located at this
code address + 3
Diredive: INTVECTOR(offset)

Table 7.5 8051 Compiler Object Settings

Page 68

Getting Started with the Raisonance Development Kits

Memory Model

Option Description

Tiny Seleds the Tiny memory model
Diredive: TINY
Small Seleds the Small memory model
Diredive: SMALL
Compaa Seleds the Compact memory model
Diredive: COMPACT
Large Seleds the Large memory model
Diredive: LARGE
Huge Seleds the Huge memory model
Diredive: HUGE
Use external stack Uses asimulated external stadk, rather than the system
stack for areentrant stadk
Diredive: EXTSTK/(none)
Comporent with Ensures the corred startup codeis used for devices with on
XRAM chip XRAM.

Diredive: INTXD/(none)
Advanced features— The compiler will use library that use asingle DPTR and

nore no arithmetic units
Diredive: (none)
Advanced features— For certain library functions the compiler will use the
Philips component Philips dual DPTR scheme
with dual DPTR Diredive: PHILIPSDDPTR
Advanced features— For certain library functions the compiler will use the
Dua DPTR DallassAMD dual DPTR scheme
DallasAMD Diredivee MODAMD(DP2)
Advanced features— For certain library functions the compiler will use the

Dua DPTR Atmel Atmel dual DPTR scheme
Directive: MODATM

80C517 Allowsthe compiler to use the alditional data pointers
and/or arithmetic processor of the 80C517 for certain
library function, depending onwhich 517 options are

selected.
Use aditional data For certain library functions the compiler will use the
pointers 80C517 multiple DPTR scheme

Diredive:

MOD517(DP8,otherparam)/MOD517NODP8,other param
)

Page 69

Chapter 7 Compiler

Use the arithmetic

For certain library functions the compiler will use the

processor 80C517 arithmetic processor
Directive:
MOD517(otherparam,AU)/MOD517(otherparam,NOAU)
Table 7.6 8051 Compiler Memory Model Settings
Note

The memory models affect the compiler in severa ways. The following tableisa

summary of the memory models

Small and Large are the preferred memory models to use. The 8051 supports up to 256
bytes of internal RAM so using the Small memory model is not always possible. In
those situations the Large memory model should be used.

Memory Model | Default Data Space
Tiny DATA

Small DATA

Compact PDATA

Large XDATA

Huge PDATA

Description
Suitable for small applications.
Maximum program sizeis 2K.

Best memory model for most
applications.

Retained for backwards compatibility
with preexisting applications.
Retained for backwards compatibility
with preexisting applications.

A simulated external stack is used for
every stack operation giving alarger
stack size however execution is slow.

Table 7.7 8051 Compiler Memory Models

Page 70

Getting Started with the Raisonance Development Kits

Registers

Option Description

Use absol ute register
address for RO-R7

Pass function arguments
in registers

Allows the compiler to use absol ute register addressing
for the register, generating more efficient but
registerbank dependant code

Directive: AREGS/NOAREGS

Allows function arguments to be passed in registers
therefore reducing memory requirements
Directive: REGPARMS/NOREGPARMS

Registerbank Selects which registerbank to use for the functions
Directive: RB(banknumber)
Table 7.8 8051 Compiler Register Settings
Optimizer

Option Description

Optimize for tight code

Optimize for fast code

Optimizer level

Generate post-optimizing
information

The optimizer will favor generating smaller code over
faster code
Directive: OT(otherparam, SIZE)

The optimizer will favor generating faster code over
smaller code
Directive: OT(otherparam, SPEED)

The level at which the optimizer will operate. The
higher the level the more optimizations are performed
Directive: OT(level, otherparam)

This option generates information for the global
optimizer.
Directive: POSTOPT/(none)

Table 7.9 8051 Compiler Optimizer Settings

Page 71

Chapter 7 Compiler

Messages
Warning level The compiler warnings are grouped into levels, with the higher

levels containing all the warningsin the lower levels. This
option indicates which levels of warnings you want the
compiler to generate

Directive: WL (level)

Stop after nerrors The number of errors after which the compiler should abandon

compilation

Directive: MAXERR(errornum)
Stop after n The number of warnings after which the compiler should
warnings abandon compilation

Directive: MAXWAR(warningnum)
Table 7.10 8051 Compiler Messages Settings

Page 72

Getting Started with the Raisonance Development Kits

XA Compiler Options Overview

The following Compiler options are grouped by section, aslisted in the Options
window.

Where there ae two dredivesfor an option, the first directive is the one used with the
option seleded. The second diredive is the one used when the optionis not selected.
In some caes the lack of adiredive seleds the default setting, which isindicated by
(nore).

Source
Option Description
ANSI C Strictly ANSI C only alowed. No language extensions.

Diredive: NOEXTEND
XA Spedfic Language ANSI C pluslanguage extensions allowed.

Extensions Diredive: EXTEND
‘struct/union/enum’ Allows the struct, union and enum keywords to be omitted
optiona when declaring structures, unions and enumeratorsin

certain situations.
Diredive: SUE_OPT

Table 7.11 XA Compiler Source Settings

Floating Point

Option Description

No floating pant No floating paint variables are allowed in the project.
Diredive: FRINOFLOAT)

|[EEE: Standard Allows sngle-predsion floating pant numbers (IEEE-754) —
little endian
Diredive: FIEEESTANDARD)

Table 7.12 XA Compiler Floating Point Settings

Page 73

Chapter 7 Compiler

Code Generation

Option Description

Enable ANSI Integer
Promotion Rules

Initialize static

variables to zero

Generic

Unsigned characters

Far access allowed

Load ES on far data
access

Load CSon far code
access

Save segment
registersin interrupt
handlers

If selected charswill be promoted to ints before
comparison.
Directive: IPPNOIP

Includes startup code to initialize non-initialized static
variablesto zero. Thisis asafeguard that can be used
against uninitialized variables.

Directive: ISNOIS

When selected all non-memory specific pointers are
generic pointers. When not selected, non-memory specific
pointers point to the default memory space for the current
memory model.

Directive: GENERIC/NOGENERIC

When selected chars are converted to unsigned chars.
Directive: UNSIGNEDCHAR/SIGNEDCHAR

Allows access to far data in page zero mode when using the
SmartXA.

Directive:
FARDATAALLOWED/FARDATANOTALLOWED

When selected the ES register is reloaded before every
access to far data. Turn this option off if you wish to set up
and maintain the ES register manually.

Directive: LOADES/NOLOADES

When selected the CSregister is reloaded before every
accessto far code. Turn this option off if you wish to set up
and maintain the CS register manually.

Directive: LOADCS/INOLOADCS

When selected the CS and ES registers are saved and
restored on the entry and exit of interrupt service routines
Directive: SAVESEG/NOSAVESEG

Table 7.13 XA Compiler Code Generation Settings

Page 74

Getting Started with the Raisonance Development Kits

Note

With the generic option turned on the following pointer declaration results in a pointer
that can point to any memory space, however the code to manipulate the pointer is
large and involveslibrary calls:

unsi gned char *foo;
With the generic option turned off the same pointer declaration resultsin a pointer that
points to the default memory space for the current memory model (such as DATA in
the Small memory model), however generic pointers can still be declared using the
generic keyword, for example

unsi gned char generic *foo;

This makes turning the generic option off the best setting to use, however be aware of
the effects.

Note

If the LOADCS and LOADES directives are being used the Compiler will
automatically set up the CS and ES registers before every far access. In addition the
relevant bit in the SSEL register will be set and cleared before and after every far
access. Thisresultsin inefficient code.

There are two steps that can be taken to remove both inefficiencies:

1. Use NOLOADES and NOLOADCS and set up the ES and CS registers
manually. Thisis most suitable when only one far segment is being used.

2. Use SSELINIT to initialize the SSEL register manually. The Compiler will
then use only the registers whose corresponding bits in the SSEL register are set for far
accesses. The other registers will be used for near accesses. For example:

SSEL| NI T(0x04)

Resultsin R2 being used for far accesses, and the other registers being used for near
accesses.

Defines

This section allows you to enter identifiers that are defined for such things as
conditional compilation.
Directive: DEFINE(text)

Page 75

Chapter 7 Compiler

Listing

Option Description

Generate listing

Show lines omitted
from compilation

Display the contents
of theincludefiles

Generate
Preprocessor listing
file

Append assembly
mnemonics list

Generate alist of
symbols

Insert form feeds at
the end of pages

Number of lines
printed per page
Number of characters
printed per line

If selected a .Ist listing file will be generated
Directive: PR(filename)/NOPR

If selected then the source code listing in the listing file will
include files that were not involved in the compilation
Directive: CO/INOCO

If selected then the contents of the include files are inserted
into the source code listing in the listing file
Directive: LC/(none)

If selected then a separate file will be generated showing
macro expansions

Directive: PP(filename)/(none)

If selected then the compiler generated assembly code will
beincluded in the listing file

Directive: CD/NOCD

If selected then a symbol table will be included in the
listing file

Directive: SB/INOSB

If selected then form feed control characters will be
inserted into the listing file

Directive: PL(lines)/(none)

Specifies how long apageis

Directive: PL(lines)

Specifieshow wide alineis

Directive: PW(characters)

Table 7.14 XA Compiler Listing Settings

Page 76

Getting Started with the Raisonance Development Kits

Object

Option Description

Generate an assembler
sourcefile

Generate an object file

Include debugging
information

Include variable type and
definition information

The compiler will generate a.src filewhich isthe
complete assembler equivalent of the C source code.
The .src file may be assembled by the assembler.
Directive: SRC

The compiler will generate arelocatable object file
that make be linked with other object files
Directive: OBJECT (filename)

Includes debugging information in the object file
Directive: DB/NODB

Includes extended debugging information in the
object file
Directive: OE/NOOE

Table 7.15 XA Compiler Object Settings

Page 77

Chapter 7 Compiler

Memory Model

Option Description

Tiny Seleds the Tiny memory model
Diredive: TINY

Small Seleds the Small memory model
Diredive: SMALL

Compaa Seleds the Compact memory model
Diredive: COMPACT

Medium Seleds the Medium memory model
Diredive: MEDIUM

Large Seleds the Large memory model
Diredive: LARGE

Huge Seleds the Huge memory model

Diredive HUGE

Functionsin system mode Indicates that the functions will execute in system
mode — only of use to SmartXA users when using an
RTOS
Diredive: SYSTEMFCT

Functionsin user mode Indicates that the functions will execute in user mode
—only of useto SmartXA users when using an RTOS
Diredive: USERFCT

Functionsin generic mode Indicates that the functions will executein a
combination of user and system modes — only of use
to SmartXA users when using an RTOS
Diredive: GENERICFCT

Use extended register set Enables the compiler to generate code using registers
R8 to R15.
Diredive: EXTREGS/INOEXTREGS

Table 7.16 XA Compiler Memory Model Settings

Page 78

Getting Started with the Raisonance Development Kits

Note

The memory models affect the compiler is several ways. The following tableisa
summary of the memory models

Memory M odel Default Data Description
Space

Tiny (page 0) DATA 24-hit addressing is not supported.
Maximum 32k of Code space and 32k of
Data space

Small (page 0) DATA 24-bit addressing is not supported.
Maximum of 64k of Code space and 64k
of Data space

Compact (nonpage0) DATA All addressing modes are supported.

Medium (nonpage0) IDATA All addressing modes are supported.

Large (non page 0) IDATA All addressing modes are supported.
Pointers default to 24-bit addressing.

Huge (non page 0) - The Huge memory model is currently not
implemented.

Table 7.17 XA Compiler Memory Models

Optimizer

Option Description

Optimize for tight code The optimizer will favor generating smaller code over
faster code
Directive: OT(otherparam, SIZE)

Optimize for fast code The optimizer will favor generating faster code over
smaller code
Directive: OT(otherparam, SPEED)

Optimizer level Thelevel at which the optimizer will operate. The
higher the level the more optimizations are performed
Directive: OT(level, otherparam)

Table 7.18 XA Compiler Optimizer Settings

Page 79

Chapter 7 Compiler

Messages
Warning level The compiler warnings are grouped into levels, with the higher

levels containing all the warningsin the lower levels. This
option indicates which levels of warnings you want the
compiler to generate

Directive: WL (level)

Stop after nerrors The number of errors after which the compiler should abandon

compilation

Directive: MAXERR(errornum)
Stop after n The number of warnings after which the compiler should
warnings abandon compilation

Directive: MAXWAR(warningnum)
Table 7.19 XA Compiler Messages Settings

Page 80

Getting Started with the Raisonance Development Kits

ST6 Compiler Options Overview

The following Compiler options are grouped by section, aslisted in the Options
window.

Where there ae two dredivesfor an option, the first directive is the one used with the
option selected. The second directive is the one used when the optionis not selected.
In some caes the lack of adiredive selects the default setting, which isindicated by
(nore).

Source
Description
‘struct/union/fenum’ Allows the struct, union and enum keywords to be omitted
optional when declaring structures, unions and enumeratorsin certain
situations.

Diredive: SUE_OPT
Table 7.20 ST6 Compiler Source Settings

Code Generation

Option Description

Enable ANS| If selected charswill be promoted to ints before comparison.

Integer This does nat generate optimal code on 8hit microcontrollers

PromotionRules such asthe ST6, but isincluded for ANSI compliance.
Diredive: IP/NOIP

Initialize static Includes gartup code to initialize non-initialized static variables
variablesto zero to zero. Thisis asafeguard that can be used against uninitialized
variables.
Diredive: ISNOIS

Generic When seleded all nonrmemory spedfic pointers are generic
pointers. When na selected, non-memory spedfic pointers
point to the default memory space for the aurrent memory

model.

Diredive: GENERIC/NOGENERIC
Unsigned When seleded chars are mnwerted to ursigned chars.
characters Diredive: UNSIGNEDCHAR/SIGNEDCHAR
Use DRWR Instructs the compiler to make a awpy of the DRWR register in
copy DRWRCOPY just before the register contents are changed.

Diredive: DRWRCOPY/(none)
Table 7.21 ST6 Compiler Code Generation Settings
Page 81

Chapter 7 Compiler

Note

With the generic option turned on the following pointer declaration results in a pointer
that can point to any memory space, however the code to manipulate the pointer is
large and involveslibrary calls:

unsi gned char *foo;
With the generic option turned off the same pointer declaration results in a pointer that
points to the default memory space for the current memory model, however generic
pointers can till be declared using the generic keyword, for example

unsi gned char generic *foo;

This makes turning the generic option off the best setting to use, however be aware of
the effects.

Defines

This section allows you to enter identifiers that are defined for such things as
conditional compilation.
Directive: DEFINE(text)

Page 82

Getting Started with the Raisonance Development Kits

Listing
Generate listing If selected a .Ist listing file will be generated
Directive: PR(filename)/NOPR
Show lines omitted If selected then the source code listing in the listing file will
from compilation include files that were not involved in the compilation
Directive: CO/INOCO
Display the contents If selected then the contents of the include files are inserted
of theincludefiles into the source code listing in the listing file
Directive: LC/(none)
Generate If selected then a separate file will be generated showing
Preprocessor listing macro expansions
file Directive: PP(filename)/(none)
Append assembly If selected then the compiler generated assembly code will
mnemonics list beincluded in the listing file
Directive: CD/NOCD
Generate alist of If selected then a symbol table will be included in the
symbols listing file
Directive: SB/INOSB
Insert form feeds at If selected then form feed control characters will be
the end of pages inserted into the listing file
Directive: PL(lines)/(none)
Number of lines Specifies how long apageis
printed per page Directive: PL(lines)
Number of characters Specifies how widealineis
printed per line Directive: PW(characters)

Table 7.22 ST6 Compiler Listing Settings

Page 83

Chapter 7 Compiler

Object

Generate an assembler The compiler will generate a.src file which isthe

sourcefile complete assembler equivalent of the C source code.
The .src file may be assembled by the assembler.
Directive: SRC

Generate an object file The compiler will generate arelocatable object file
that make be linked with other object files
Directive: OBJECT (filename)

Include debugging Includes debugging information in the object file

information Directive: DB/NODB

Table 7.23 ST6 Compiler Object Settings

Memory Model

Description

Small Selects the Small memory model
Directive: SMALL

Large Selects the Large memory model

Directive: LARGE
Table 7.24 ST6 Compiler Memory Model Settings

Note

The memory models affect the compiler is several ways. The following tableisa
summary of the memory models

Memory Model | Description

Small No bank switching. Maximum program size of 4k. Maximum
128 bytes of DATA.
Large Bank switching supported. Maximum program size of 8k.

Maximum 512 bytes of RAM + EEPROM.
Table 7.25 ST6 Compiler Memory Models

Page 84

Getting Started with the Raisonance Development Kits

Optimizer
Option Description
Optimize for tight code The optimizer will favor generating smaller code over
faster code
Directive: OT(otherparam, SIZE)
Optimize for fast code The optimizer will favor generating faster code over
smaller code
Directive: OT(otherparam, SPEED)
Optimizer level Thelevel at which the optimizer will operate. The
higher the level the more optimizations are performed
Directive: OT(level, otherparam)
Table 7.26 ST6 Compiler Optimizer Settings
Messages
Option Description
Warning level The compiler warnings are grouped into levels, with the higher

levels containing all the warningsin the lower levels. This
option indicates which levels of warnings you want the
compiler to generate

Directive: WL (level)

Stop after nerrors The number of errors after which the compiler should abandon

compilation

Directive: MAXERR(errornum)
Stop after n The number of warnings after which the compiler should
warnings abandon compilation

Directive: MAXWAR(war ningnum)
Table 7.27 ST6 Compiler Messages Settings

Page 85

Chapter 7 Compiler

Compiler Command Line Syntax

All three compilers have the same command line syntax:
toolexename sour cefile [directivedist]
toolexename:
one of: RC51, RCXA, RCST6
sourcefile:
an absolute or relative path to a C sourcefile
directiveslist:
a space separated list of directives. The directives may be listed in any order.

If each directive is not explicitly listed then defaults will be used for the missing
directives.

Command line examples:

RC51 test.c PR(test.lst) OBJECT(test.obj) CD SB
RCXA C:\wor k\ xa. ¢ USERFCT EXTSTK SAVESEG

RCST6 ..\ foo0.c DRWRCOPY

RC51 bar.c

Page 86

Getting Started with the Raisonance Development Kits

Chapter 8. Assembler
Changing the Assembler Settings in RIDE

With aproject loaded into RIDE the Assembler options for the project as awhole may
accessed by choosing Options | Project then expanding the tree for the Assembler and
clicking on the various sections. The following screenshot is for the 8051.:

Options: — Gerneral information
[Environment ¥ Generate an object fils OB
giée;tnriﬁ [Generate post optimizing information
= MAST

S ource — Debugaing information
" Noinformation
" Standard

™ Extended [OF]

— Register banks used

(T, 1 rz rz

ok, | Defaults | Lancel | Help |

Once dl the options have been set up accordingly click on OK to confirm them.

The Assembler options may a so be set individually for each source file in the project:

» Inthe Project window select the source file whose options you wish to change

» Pressthe right mouse button.

e From the pop-up menu choose Options | Local Options. A window will open
allowing you to change the assembler options for that sourcefile.

Page 87

Chapter 8 Assembler

8051 Assembler Options Overview

The following Assembler options are grouped by section, as listed in the Options
window.

Where there are two directives for an option, the first directive is the one used with the
option selected. The second directive is the one used when the option is not selected.
In some cases the lack of a directive selects the default setting, which isindicated by
(none).

Source

Option Description

Define symbolsforthe When selected a standard 8051 set of Special Function
8051 function registers Registers will be defined, thus avoiding having to define
them in the assembler file
Directive: MOD51/NOMOD51

Accept Intel MPL When selected the assembler will accept the Intel Macro
programming language.
Directive: MACRO(MPL)/(none)

ASM-51 Syntax When selected the assembler will accept the Intel ASM-
51 assembler syntax.
Directive: SYNTAX(ASM51)

Raisonance Syntax When selected the assembler will accept the syntax of
older Raisonance assemblers, such as EMA-51.
Directive: SYNTAX(EMA)

Table 8.1 8051 Assembler Source Settings

Set
By entering text with the format:
synmbol [= value] [, synbol [= value]]

values can be assigned to symbols. If no value is specified then the symbol is assigned
the value OXFFFF.

Directive: SET (text)

Page 88

Getting Started with the Raisonance Development Kits

Listing
Generate Listing When selected the assembler will generate a .Ist liting file
Directive: PRINT (filename)/NOPRINT
Include the program When selected the assembler source code will be included
source text inthelisting file

Directive: LIST/NOLIST
Display the contents When selected the contents of include files will be

of theincludefiles inserted into the source code listing in the listing file
Directive: LC/(none)

Show unassembled Lines that were not assembled will be included in the

lines of conditional source code listing when this option is selected

constructs Directive: COND/NOCOND

Expand assembly When selected assembly code inside macro definitions

instructions of macros ~ will appear in thelisting file
Directive: GEN/NOGEN

Generate atable of the When selected a symbol table will be included in the

symbols listing file
Directive: SB/INOSB
Insert form feeds at When selected form feed control characters will be
the end of pages inserted into the listing file at the end of every page
Directive: EJECT/(none)
Generate a cross Includes a cross reference table of all the symbolsin the
reference table of the listing file
symbols Directive: XR/NOXR
Number of characters Specifies the page width of the listing file in characters
printed per line Directive: PW(characters)
Number of lines Specifies the page length used in the listing file in lines
printed per page Directive: PL(lines)

Table 8.2 8051 Assembler Listing Settings

Page 89

Chapter 8 Assembler

Object

Option Description

Generate an When seleded the assembler will generate arelocatable objed file

objed file Diredive: OBJECT (filename)/NOOBJECT

Generatepost When seleded the assembler will generate information wsed in
optimizing global optimization

information Directive: POSTOPT/(none)

Debuggng Seledion o thisoptionwill omit debuggng information from the
infformation— objed file

noinformation Diredive: (none)
Debuggdng This option includes basic debuggng informationin the object file

infformation— Diredive: DB

standard

Debuggng Thisoption includes additional debuggnginformationin the
information— objed file

extended Diredive: OE

Register banks This sction of the options allow you to select which register
used banks are to be reserved by the assembler.

Diredive: RB(registerbank],registerbank])
Table 8.3 8051 Assembler Object Settings

Page 90

Getting Started with the Raisonance Development Kits

XA Assembler Options Overview

The following Assembler options are grouped by section, as listed in the Options
window.

Where there ae two dredivesfor an option, the first directive is the one used with the
option seleded. The second directive is the one used when the optionis not selected.
In some caes the lack of adiredive seleds the default setting, which isindicated by
(nore).

Source

Option Description

Define symbolsfor the When seleded a standard XA set of Spedal Function
XA functionregisters Registerswill be defined, thus avoiding having to define
them in the assembler file
Directive: MODXA/NOMO

Acceot Intel MPL When seleded the assembler will aacept the Intel Maao
programming language.
Diredive: MACRO(MPL)/(nore)

Always %t code labels When seleded the assembler will ensure that code labels

oneven addresses are word-aligned.
Diredive: ECL/NOECL

Use extended register ~ Allows the use of registers R8 — R15 when seleded.
set R8 —R15 Diredive: EXTREGS/NOEXTREGS

Table 8.4 XA Assembler Source Settings

Set
By entering text with the format:
synmbol [= value] [, synbol [= val ue]]

values can be assigned to symbadls. If no value is gecified then the symbadl is assigned
the value OXFFFFE

Diredive: SET(text)

Page 91

Chapter 8 Assembler

Listing
Generate Listing When selected the assembler will generate a .Ist listing file
Directive: PRINT (filename)/NOPRINT
Include the program When selected the assembler source code will be included
source text inthelisting file

Directive: LIST/NOLIST
Display the contents When selected the contents of include files will be

of theincludefiles inserted into the source code listing in the listing file
Directive: LC/(none)

Show unassembled Lines that were not assembled will be included in the

lines of conditional source code listing when this option is selected

constructs Directive: COND/NOCOND

Expand assembly When selected assembly code inside macro definitions

instructions of macros will appear in thelisting file
Directive: GEN/NOGEN

Generate atable of the When selected a symbol table will be included in the

symbols listing file
Directive: SB/INOSB
Insert form feeds at When selected form feed control characters will be
the end of pages inserted into the listing file at the end of every page
Directive: EJECT/(none)
Generate a cross Includes a cross reference table of all the symbolsin the
reference table of the listing file
symbols Directive: XR/NOXR
Number of characters Specifies the page width of the listing file in characters
printed per line Directive: PW(characters)
Number of lines Specifies the page length used in the listing file in lines
printed per page Directive: PL(lines)

Table 8.5 XA Assembler Listing Settings

Page 92

Getting Started with the Raisonance Development Kits

Object
Generate an When selected the assembler will generate a rel ocatable object
object file file
Directive: OBJECT (filename)/NOOBJECT
Include This option includes debugging information in the object file
Debugging Directive: DB/NODB
information
Register banks Thisoption is not used by the assembler and is only included for
used compatibility with the 8051 tool set.

Table 8.6 XA Assembler Object Settings

Page 93

Chapter 8 Assembler

ST6 Assembler Options Overview

The following Assembler options are grouped by section, as listed in the Options
window.

Where there are two directives for an option, the first directive is the one used with the
option selected. The second directive is the one used when the option is not selected.
In some cases the lack of adirective selects the default setting, which isindicated by
(none).

Source

Option Description

Define symbolsforthe ~ When selected a standard ST6 set of Special Function
ST6 function registers Registers will be defined, thus avoiding having to define
them in the assembler file
Directive: MODST6/NOMO

Use AST6 syntax When selected the assembler will accept files written for
the ST Microelectronics AST6 assembler.
Directive: PREPROST/(none)

Table 8.7 ST6 Assembler Source Settings

Set
By entering text with the format:
synbol [= value] [, synbol [= val ue]]

values can be assigned to symbols. If no value is specified then the symbol is assigned
the value OXFFFF.

Directive: SET (text)

Page 94

Getting Started with the Raisonance Development Kits

Listing
Option Description
Generate Listing When selected the assembler will generate a .Ist listing file

Directive: PRINT (filename)/NOPRINT

Include the program When selected the assembler source code will be included
source text inthelisting file
Directive: LIST/NOLIST

Display the contents ~ When selected the contents of include fileswill be inserted

of theincludefiles into the source code listing in the listing file
Directive: LC/(none)
Show unassembled Lines that were not assembled will be included in the
lines of conditional source code listing when this option is selected
constructs Directive: COND/NOCOND
Expand assembly When selected assembly code inside macro definitions will
instructions of appear in the listing file
macros Directive: GEN/NOGEN
Generate a table of When selected a symbol table will beincluded in the listing
the symbols file

Directive: SB/INOSB
Insert form feeds at When selected form feed control characters will be inserted

the end of pages into the listing file at the end of every page

Directive: EJECT/(none)
Generate a cross Includes a cross reference table of al the symbolsin the
reference table of the listing file
symbols Directive: XR/INOXR
Number of characters Specifies the page width of the listing file in characters
printed per line Directive: PW(characters)
Number of lines Specifies the page length used in the listing file in lines
printed per page Directive: PL(lines)

Table 8.8 ST6 Assembler Listing Settings

Page 95

Chapter 8 Assembler

Object

Option Description

Generatean When selected the assembler will generate arel ocatable object file
object file Directive: OBJECT (filename)/NOOBJECT

Include This option includes basic debugging information in the object file

Debug Directive: DB/NODB

information

ROM fill The ROM areanot used by code or constantsis filled with the ROM

value fill value. Thisis useful in ensuring the ROM area has a particular
checksum.

Directive: ROMFILL (value)
Table 8.9 ST6 Assembler Object Settings

Page 96

Getting Started with the Raisonance Development Kits

Assembler Command Line Syntax

All three assemblers have the same command line syntax:
tool exename sour cefile [directivedist]
toolexename:
one of: MA51, MAXA, MAST6
sourcefile:
an absolute or relative path to an assembler sourcefile
directiveslist:
a space separated list of directives. The directives may be listed in any order.

If each directiveisnot explicitly listed then defaults will be used for the missing
directives.

Command line examples:

MA51 test.abl PR(test.lst) OBJECT(test.obj) SB
MAXA C: \ wor k\ xa. axa NOMO XR

RCST6 ..\ foo0.st6 ROVFILL(OxFF)

MA51 bar. ab1

Page 97

Chapter 8 Assembler

Page 98

Getting Started with the Raisonance Development Kits

Chapter 9. Linker
Changing the Linker Settings in RIDE

With aproject loaded into RIDE the Linker options for the project as awhole may be
accessed by choosing Options | Project then expanding the tree for the Linker and
clicking on the various sections. The following screenshot is for the 8051.:

Ophions:
— Libraries
-- Environment ¥ RCH1xLIE
- Directories
- RCST — Mizcellaneous ;
" MAST Ram size 128 || ¥ Generate an Intel Hex file
= LXE Iitislized Fam size 128 | Generate & Binary file
B Lirker , ,
o Listing [<)printf buffer size 16 ¥ Include Debug Info.
- Bark switching Esternal stack size 256
Flash Initial walue of Timerl D:-:IFB
i Kemel tarting add
R0k - oriitar — atartling addreszes
o Mare Code [0-FFFF[; |E||j|:|E| Idata [0-FF[: IEIEIDEI Bit [O-FF: IIZIEIDD
#data [0-FFFF[: IEIDEIEI Data [0-FF[: 0000
—Abzaolute segments offzet
Code [0-FFFF: IEIDEIEI

Defaults | Lancel | Help |

Once dl the options have been set up accordingly click on OK to confirm them.

Page 99

Chapter 9 Linker

8051 Linker Options Overview

Thefollowing Linker options are grouped by section, as listed in the Options window.

Where there aetwo dredivesfor an option, the first directive is the one used with the
option selected. The second directive is the one used when the optionis not selected.
In some cases the lack of a diredive seleds the default setting, which isindicated by
(nore).

Linker

Option Description

Libraries— RC51xLIB When seleded the libraries suppdied with the tool set

will be used.
Diredive: (none)/NLIB

Ram size Specifies the amount of internal RAM onthe device
Diredive: RS(size)

Initialized Ram size Specifies the amount of internal RAM to initializeto O
Diredive: RSI(size)

()printf buffer size Specifies the buffer size used to construct stringsin
printf and sprintf

External stadk size When using an external reentrant stack this options
spedfiesthe size of the stack.

Initial value of timer 1 In the startup code timer lisinitialized to be used asa

baud rate generator. This option alowsthe initial value
to be dhanged therefore dnanging the baud rate.

Generate an Intel Hex file When seleded an Intel Hex file will be generated.
Generate abinary file When seleded araw binary file will be generated.

Include debug info. Debuggnginformationwill be included in the asolute
objed filewhen thisoptionis sleded.
Diredive: DL + DP+ DS/NODL + NODP + NODS

Starting addresses— Code Specifies the starting address for Code segments. Note
that it does not specify a starting address for the reset
vector or interrupt vedors.

Diredive: CODE(address)

Starting addresses - Xdata Specifies the starting address for the external RAM
(Xdata) segments.
Diredive: XDATA (address)

Starting addresses - Idata Specifies the starting address of theindired internal
RAM (ldata) segments.

Page 100

Getting Started with the Raisonance Development Kits

Directive: IDATA (address)

Starting addresses- Data Specifies the starting address of the dired internal
RAM (Data) segments. Note that it does not affect the
location of the registerbanks.

Diredive: DATA (address)

Starting addresses - Bit Specifies the starting address of the internal bit-
addressable area (Bdata).
Diredive: BDATA (address)

Absolute segments offset ~ Specifies an offset to apply to absolute ade segments
- code Diredive: ABSCODEOFFS(offset)

Table 9.1 8051 Linker Settings

Note

Sometimes it isundesirable to have the project code starting at 0x0000and another
addressisrequired. For example if two separate projects must be loaded into the same
ROM at the sametime.

To relocate al code to a specific address two steps must be performed:

1. Specify the addressin the Starting addresses — Code box
2. Specify the address in the Absolute segments offset — code box

Always remember to check the link map of modue table in the map fileto verify that
the memory map of your projed is corred.

Listing
Option Description
Include the aoss When seleded a aoss reference table will beincluded in

referencestable XREF thelisting file.
Diredive: IX/NOIX

Insert form feeds at the When seleded form feed control charaders will be
end of pages inserted into the listing file.
Diredive: EJECT/(none)

Number of linesprinted Specifies the page length in lines.

per page Diredive: PL(lines)
Number of charaders Specifies the page width in charaders.
printed per line Diredive: PW(lines)

Table 9.2 8051 Linker Listing Settings

Page 101

Chapter 9 Linker

Bank Switching

Option Description

Use bank switching When selected the linker will use bank switching to

mode provide more than 64k of code space
Directive: BANKAREA((start, end)

Maximum number of The maximum number of code banks used in the project

banks (must be a power of 2)

Starting address of the ~ The base address of the code banks

code banking Directive: BANKAREA (address, otherparam)

Ending address of the The top address of the code banks

code banking Directive: BANKAREA (otherparam, address)

Use external stack When selected allows functions to be reentrant.
Directive: BM(SMA)/BM(PLM)

Use the macro The macro in the box is used to switch code banks. A

definition custom macro may be entered into the box.

Evaluate the expresson The symbol that represents the currently selected code

for the currently bank, and is used in the macro definition.

selected bank

Modules Tab The section under the Modules tab may be used to select
which code banks to place various object files and
libraries into, by double-clicking on each one. Note that
object filesare only listed if the project has previousy
been built.
Directive: BANK banknumber{ objectfile}

Table 9.3 8051 Linker Bank Switching Settings

Note

Code Banking is an involved and complex area of the linker. Please refer to the Linker
manual for full and detailed information on Code Banking.

Page 102

Getting Started with the Raisonance Development Kits

Flash

Option Description

Use Flash mode/Start Activate the Flash mode. Specify the border address
Address between the ROM part (lowest bound and the Flash part
(highest bourd)
Diredive: FLASH(address)

FLSfile—locked mode Relocae/Link modues of the Flash Part, and keep intact

the ROM part.
Diredive: REFLASH

Reserved data space Reserve agap of n bytesfor future DATA storage needs.
Diredive: RESERVE(DATA, n)

Reserved hit space Reserve agap of n bytesfor future BIT storage needs.

Diredive: RESERVE(BIT, n)
Reserved Bdata space Reserve agap of n bytesfor future BDATA storage

needs.

Diredive: RESERVE(BDATA, n)
Object filesto bein Seled the modues to be located in the Flash.
Flash Diredive: FLASH(otherparam, objectfilelist)

Table 9.4 8051 Linker Flash Settings

Page 103

Chapter 9 Linker

Kernel

Use KR-51Kernel When seleded the KR-51 RTOS will be used

Kernel Model — KR- Seledsthe Tiny model — upto 8tasks

Tiny

Kernel Model - KR- Seleds the Standard model — upto 32tasks with Xdata

Standard required.

Kernel Model - KR- Selects the Huge model — upto 256tasks with Xdata

Huge required.

Debug When seleded the extended debuglibraries will be used.

Semaphores Seled this optionif semaphores are used.

Time— use the When seleded the dock and dviders sttingsin the

automatic definitions window are used, otherwise the same settings must be
provided in an assembly file.

CPU cycleg/tick Specifies the relationship between the CPU clock cycles
and the RTOS tick rate.

Dividers— Group 1 The number of ticksin asingle group 1tick.

Dividers— Group 2 The number of group lticksin asingle group 2 tick

Dividers— Group 3 The numberof group 2 ticksin asingle group 3tick

Table 9.5 8051 Linker Kernel Settings

Page 104

Getting Started with the Raisonance Development Kits

ROM-Monitor

Option Description

Use the ROM-Monitor

Communications - Standard
UART

Communications - External
UART

Communications - ROM-
Monitor

Communications —
Communication baud rate

Dynamicdly modifiable amde

XEVA baoard
Von Neuman becard

When seleded the ROM Monitor will be used to
provide in-system debuggng.

Sdled to use thefirst internal UART of the
microcontroller for the monitor to communicate
with RIDE

Seled to use an external UART for the monitor to
communicate with RIDE

Seled to use a austomized method for the monitor
to communicate with RIDE

Specify the baud rate of the communications
between RIDE and the monitor

Seled if the odeislocated in RAM where it may
be modified. Thisisrequired if the use of
bre&pointsis desired.

Selea if the board is a Raisonance XEV A baard

Seled if the board isaVon Neuman board (code
spaceis mapped to external RAM).

More

Linker diredives may be entered into the More box in the form of a space separated

list.

Table 9.6 8051 Linker ROM-Monitor Settings

Note however that you should not specify adiredive that will already be spedfied by
selection or non-selection d alinker optionin one of the sedions previoudy

described.

Page 105

Chapter 9 Linker

XA Linker Options Overview

Thefollowing Linker options are grouped by section, as listed in the Options window.

Where there aetwo dredivesfor an option, the first directive is the one used with the
option selected. The second directive is the one used when the optionis not selected.
In some asesthe lack of adirective seleds the default setting, which isindicated by
(nore).

Linker

Option Description

Libraries— When seleded the libraries supfied with the toolset will

RCXAXx.LIB be used.
Diredive: (none)/NLIB

BTR initialization This option should be selected if the Bus Timing Register

needed needs to be initialized before execution.

BTRinit value The valueto initializethe Bus Timing Register to.
Diredive: BTRINIT(value)

Ram size Specifies the amount of internal RAM onthe device
Diredive: RS(size)

Initialized Ram size Specifies the anount of internal RAM to initializeto O
Diredive: RSI(size)

User stack size Specifies the size of the user stack
Diredive: USSsize)/NOUSS

System stadk size Specifies the size of the system stack

Diredive: SSYs1ze)/NOSSS

Buffer size for printf Specifies the buffer size used to construct strings by printf
and sprintf

Initial value of timer 1 In the startup code timer 1isinitialized to be used asa
baud rate generated. This option alowsthe initial value to
be dhanged therefore changing the baud rate.

Generate an Intel Hex ~ When seleded an Intel Hex file will be generated.
file
Generate abinary file ~ When seleded araw binary file will be generated.

Include debug info. Debuggnginformation will be included in the &ésolute
objed file when thisoption is ®leded.
Diredive: DL + DP+ DS/NODL + NODP + NODS

Generate aosgef table When seleded a aoss-referencetableisincluded in the

Page 106

Getting Started with the Raisonance Development Kits

file
Generate an ABSfile
Manage stacks

System overflow

User overflow

System locdion
Listing— lines/page

Listing—
characterdline

map file.
Diredive: I X/NOIX

When seleded an ABS format file compatible with some
emulators will be generated.

Enables the stadk overflows and the system stack location
to be aontrolled.

Specifies the number of bytesto reserve below the system
stack overflow paint.

Diredive: SSTKOV (bytes)

Specifies the number of bytes to reserve below the user
stack overflow paint.

Diredive: USTKOQV (bytes)

Specifiesthe location of the system stack.

Diredive: SSTACK (address)

Specifies the page length of the map filein lines
Diredive: PL(lines)

Specifies the page width of the map file in characters
Diredive: PW(characters)

Relocation

Option

Table 9.7 XA Linker Settings

Description

Nea code relocation —
base aldress

Far code relocation —
base address

Nea datarelocaion —
Nea data/idata segment

Nea datarelocaion -
| data base address

Nea datarelocaion —
data base aldress

Far datarelocaion —
| data base address

Far datarelocaion —
Data base aldress

Specifies the starting address for nea code segments
Diredive: CO(address)

Specifies the starting address for far code segments
Diredive: FARCODE(address)

Specifies the segment to located the near data and idata
into.
Diredive: NDTSEG(segment)

Specifies the starting address for nea idata segments
Diredive: NID(address)

Specifies the starting address for nea data segments
Diredive: NDT(address)

Specifies the starting address for far idata segments
Diredive: FID(address)

Specifies the starting address for far data segments
Diredive: FDT (address)

Table 9.8 XA Linker Relocation Settings

Page 107

Chapter 9 Linker

Kernel

Option Description

Use KRXA Kernel When sdleded the KR-XA RTOS will be used

Debug When seleded the extended debuglibraries will be used.

Semaphores Seled this optionif semaphores are used.

Use the automatic When seleded the dock and dviders sttingsin the window

definitions are used, otherwise the same settings must be provided in an
assembly file.

CPU cycledltick Specifies the relationship between the CPU clock cycles and
the RTOS tick rate.

Dividers—group 1 The number of ticksin asingle group 1tick.
Dividers— group 2 The number of group 1ticksin asingle group 2 tick
Dividers—group 3 The numberof group 2 ticks in asingle group 3tick

Table 9.9 XA Linker Kernel Settings

ROM-Monitor
Option Description
Use the ROM- When seleded the ROM Monitor will be used to providein-
Monitor system debuggng.

Communications - Seled to usethefirst internal UART of the microcontroller
Standard UART 0O for the monitor to communicate with RIDE
Communications— Seled to use the secondinternal UART of the microcontroller

Standard UART 1 for the monitor to communicate with RIDE
Communications— Seled to use an external UART for the monitor to

Externa UART communicate with RIDE

Communications— Specify the baud rate of the communications between RIDE
Communication and the monitor

baud rate

Dynamicdly Selea if the cdeislocated in RAM where it may be
modifiable ade modified. Thisisrequired if the use of breakpointsis desired.
XEVA board Seled if the board is a Raisonance XEVA baoard

Von Neuman Seled if the board isaVon Neuman board (code spaceis
board mapped to external RAM).

Table 9.10 XA Linker ROM-Monitor Settings

Page 108

Getting Started with the Raisonance Development Kits

More

Linker directives may be entered into the More box in the form of a space separated
list.

Note however that you should not specify a directive that will already be specified by
selection or non-selection of alinker option in one of the sections previously
described.

Page 109

Chapter 9 Linker

ST6 Linker Options Overview

Thefollowing Linker options are grouped by section, as listed in the Options window.

Where there aetwo dredivesfor an option, the first directive is the one used with the
option selected. The second directive is the one used when the optionis not selected.
In some caes the lack of adiredive seleds the default setting, which isindicated by

(nore).

Linker

Option Description

Generate aHex file
Generate abinary file

Include debug
information

ROM — Fill unused areas

ROM —Fill reserved
aress

Use RCST6x.LIB library
files

Initialized static RAM
size
Printf argument max size

When seleded an Intel Hex file will be generated
When seleded araw binary file will be generated

Seled to include debuggnginformationin the asolute
objed file

Diredive: DL + DP+ DS/INODL + NODP + NODS
When seleded enter avalue to fill the unused areas of
ROM with.

Diredive: ROMFILLUNUSEDVALUE(value)

When seleded enter avalue to fill the reserved areas of
ROM with.
Diredive: ROMFILL RESERVEDVALUE(value)

Seled to usethe librariesthat are supfdied with the
toolset.
Diredive: (none)/NLIB

Number of bytesto initialize in the static RAM
Diredive: RAMSIZEINIT (bytes)

Maximum printf argument size in bytes
Diredive: PRSTATICSIZE(bytes)

Bank Switching

Table 9.11 ST6 Linker Settings

This sction alowsthe mde bank for specific objea and library filesto be selected.
Doube-click on afile to select the mde bank.

Page 110

Getting Started with the Raisonance Development Kits

More

Linker directives may be entered into the More box in the form of a space separated
list.

Note however that you should not specify adirective that will already be specified by
selection or non-selection of alinker option in one of the sections previously
described.

Listing
Option Description
Include the cross When selected a cross reference table will beincluded in

reference table XREF the map file.
Directive: IX/NOIX

Insert formfeedsat the ~ When selected form feed control characters will be
end of pages inserted into the map file.
Directive: EJECT/(none)

Number of linesprinted Specifies the page length of the map filein lines

per page Directive: PL(lines)

Number of characters Specifies the page width of the map file in characters.
printed per line Directive: PW(characters)

Print call tree When selected includes the call tree in the map file.

Directive: CALLTREE/NOCALLTREE

Print modul e mapping When selected includes the module mapping information
in the map file
Directivee MODULEMAP/NOMODULEMAP

Table 9.12 ST6 Linker Listing Settings

Page 111

Chapter 9 Linker

Linker Command Line Syntax

All three linkers have the same command line syntax:
toolexename objectfilelist [directivedist]
toolexename:
oneof: LX51, RLXA, RLST6
objectfilelist:
acomma separated list of object files and library files to be linked together
directiveslist:
a space separated list of directives. The directives may be listed in any order.

If each directive is not explicitly listed then defaults will be used for the missing
directives.

Command line examples:
LX51 test.obj, foo.lib TQ(test.aof) RS(128) IX
RLXA c:\wor k\ bar. obj SSS(256) TQ(bar. aof)

RLST6 ..\baz.obj, test.obj CODESTART(80) TQ baz.aof)

Page 112

Getting Started with the Raisonance Development Kits

Glossary

8051 — an 8-bit microcontroller family which isthe world’ s most popuar and feaures
the most derivatives. Many dfferent silicon vendas make 8051s.

Absolute Object File—an olject file generated bythe linker containing datato be
stored in atarget’s ROM and RAM. Addresses are specified for all the target’sdatain
thefile. The file may also contain debuggng information.

Assembler —aprogram which takes a sourcefile containing a textual representation of
assembly code and convertsit into abinary form stored in arelocaable object file. The
assembler processes ymbals converting them to addresses to be fixed and performs
maao processing.

Breakpoint —a code aldress at which execution must stop orce the microcontroller
readesit.

Build process —the processinvaving the compilation and/or assembly of sourcefiles,
followed bythelinking d generated object files, and optionally followed by the
processing d the linker generated absolute objed file to convert it into ather file
formats.

Compiler —a program which takes a sourcefile containing a C program and converts
it into abinary form stored in arelocaable object file.

Debugger — software which enables high-level aswell aslow-level debuggngto be
performed, including debuggng of software running on target hardware.

Execution point — the addressat which the next instruction will be exeauted, i.e. the
location where the Program Counter pants to.

Intel Hex File—an ASCII file format that represents binary data stored at specific
addresses.

Interrupt Service Routine — the function which is executed when a particul ar
interrupt is generated, providing the interrupt has been correctly enabled.

I/O —input/output — for example pins on a microcontroller which allow signalsto be
generated or read.

L anguage extension — an extensionto the ANSI C programming language which
allows feaures gecific to amicrocontroller to be used. Language extensions take the
form of new keywords and rew operator syntax.

Page 113

Glossary

Library —aset of relocatable objed files combined into asinglefile cdled alibrary.
The library may then be linked with ather relocaable object files producing the same
result asif each relocatable object filein the library had been linked individually.

Library Manager —a program that allows the creation d library and the aldition and
removal of relocatable object files from the library.

Linker —aprogram that takes a set of relocaable object files and combines them into
asinge absolute object file. All relocaable mde and datais located at specific
addresses. All symbdls are resolved to specific addresses.

Listing file—the text files generated by the assembler and compiler which detail what
the assembler and compiler did when they processed a sourcefile and the result of the
processing.

Map file —the text file generated bythe linker which details what the linker did when
it processed the inpu files and the result of the processing.

Memory model —the memory model configures the Compiler to operatein a cetain
way by seleding the default memory space and the addressing modes allowed.

Microcontroller —asingle-chip computer. Integrated orto one chipisa
microprocessor, RAM, peripherals, such as UART, /O parts, timers, CAN controllers,
etc, usually ROM/EPROM/Flash/OTP ROM, sometimes EEPROM.

Microcontroller family —a colledion of microcontrollers that feature the same
instruction set, memory areas, and ather core features.

M odule —the code and dhta generated bythe assembling a compiling d asingle
sourcefile.

Monitor —a program that runs on the target system along with a user program and
reports back debugging information.

Peripheral —aunit integrated onto a microcontroller chip with a specific function, not
considered part of the cre functions. For example UART, timer, CAN controller, 1/0
port, PCA, watchdog 12C

Program Counter — aregister which contains the address of the next instructionto be
executed.

Project —adescription d al the information necessary to create an absolute object file
and possibly an Intel Hex File. Thisincludes the sourcefiles required, any libraries
required, alist of todsrequired in the build process, how to execute the tools.

Page 114

Getting Started with the Raisonance Development Kits

Project File—afile mntaining all the project information.

Relocatable object file—afile amntaining code and data generated by the processing
of asource file. However some symbols may naot be fixed to spedfic addresses.

RIDE — Raisonance Integrated Development Environment. RIDE functions as an
editor, projed manager, make utility and simulator/debugger, feauringamenu diven
and toolbar driven user interface.

Segment —when asourcefileis processd it is broken upinto segments. Thereisa
segment for each function and a segment for eadh of the memory areas that have static
relocaable variables in the sourcefile.

Simulator — aprogram that takes code for a microcontroller and executes it in exactly
the same way the microcontroller would execute it — allowing detailed analysis of what
would happen if the code was exeauted in the microcontroller.

Sour cefile —atext file that contains either atextual representation of assembly code
or a C program.

Special Function Register —aregister in amicrocontroller that allows control of
fedures of the microcontroller.

ST6 —an 8-bit microcontroller family manufactured by ST-Microelectronics.

Startup code —the sedion d assembler code that exeautes before the main functionis
readed. Usualy the startup code is automatically inserted by the linker, however it
can be modified.

Symbol table —atable listing each symbad andthe aldressit is dored at.

Timer —aperipheral that can count either up a down or count pulses onapin.

XA —a16-bit microcontroller family manufactured by Philips Semiconductors.

Page 115

Glossary

Page 116

Getting Started with the Raisonance Development Kits

251 65
Ol i See 8051
OL7 i See 80C517

8051...1, 7,9, 13, 15, 16, 18, 28, 29,
41, 52, 57, 61, 63, 64, 65, 66, 67,
68, 70, 71, 72, 87, 88, 89, 90, 93,
99, 100, 101, 102, 103, 104, 105,
113

80CH1....eeveeeeecee See 8051
BOCH17 ..o 69, 70

aof file .o 25, 26, 59
ABSFile.....ccoveeeveeeeeeeee, 107
ABSCODEOFFS..........cccceuunen. 101
Absolute Object File.......14, 25, 113
absolute register addressing 71
additional help.................... See help
address.......cooeeveveeneeee e 11
addressing modes................. 79, 114
advanced options..........cccceeeveeunenne 32
advanced optionswindow 32
AMD ..o 69
animate.........ccceeeueee. See animation
aNIMatioN.......coceveerereneeie e 41
ANS See Compiler
ANSI C......cceovnnee. 8,9, 64,73, 113
ANSI C Compiler....... See Compiler
ANSI Integer Promotion..66, 74, 81
application...........ccceveenne. 21, 22, 39
AREGS........cooiireeeeeneeeeeeeeins 71
arithmetic processor 69, 70
ASCI o, 34,113
ASM-51.....ccoiiiiiiiiiececeeeeen, 88

Assembler ...8, 9, 13, 14, 15, 16, 21,
55, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 113

Assembler options......87, 88, 91, 94

assembly codelb, 42, 43, 55, 56, 67,
76, 83, 89, 92, 95, 113, 115

assembly instruction... 22, 89, 92, 95

ASTB oo 94
AtME ..., 69
AUTO e 66
BANK ..o 102
bank switching.............. 84, 102, 110
BANKAREAoooveeeeeeee e 102
baud rate............. 100, 105, 106, 108
BCD oo 65
BDATA ..o 101, 103
bigendian..........cccocceevveviniieennne 65
BIN folderccovevieeeeieeeeee 18
binary file................... 100, 106, 110
bit-addressable SFRs.................... 61
bluebar......ccccccoeeuvenn. 36, 41, 42, 53
BM oo 102
break buttoncccoeeeeevveneeneee. 44

breakpoint 22, 35, 38, 39, 40, 41, 42,
43, 44, 105, 108, 113

2 I S 106
BTRINIT oo 106
build process........... 14, 27, 113, 114
Bus Timing Register SeBTR
Cal tre i, 15, 58, 111
CALLTREE.......oooevieecieeen. 111
CD.oereeeeeeee, 17, 67, 76, 83, 86
CO. e, 67, 76, 83, 107
CODE.......cooeeeeeeeeeeeee e 100
codebankcccoueveeennennn. 102, 110
codelabels......coovvceveiiicieeeeee 91
CODESTART ...ooeveeeeieeeee e, 112

Page 117

Index

Command Line....21, 55, 57, 86, 97,
112

Command Line Invocation........... 55

COMPACT ... 69, 78

Compiler8, 9, 13, 15, 16, 18, 19, 21,
27, 28, 31, 36, 55, 58, 59, 63, 64,
65, 66, 67, 68, 70, 71, 72, 73, 74,
76, 77, 78, 79, 80, 81, 83, 84, 85,
86, 113, 114

Compiler options..55, 63, 64, 73, 81

COND....o oo 89, 92, 95
conditional compilation....67, 75, 82
CONVENLIONS. ..o e eee oo 10

cross reference table 89, 92, 95, 101,
111

crystal frequencycccccceeveennen. 22

CSregister ..o, 74

datasheetcooooeeereneicninnnn 19, 61
DB ..o 68, 77, 84, 90, 93, 96
debug options.........cccceveerenene 32,33
debug options window 32,33
debug session..........ccceeeeviennne 35, 43
Debug windowc.cccceeeeennenne. 35

Debugger .13, 14, 21, 22, 25, 31, 32,
33, 34, 36, 41, 42, 44, 45, 46, 50,
58, 59, 113, 115

Debugger window 34,41

debugging information 8, 14, 68, 77,
84, 90, 93, 96, 100, 106, 110,
113, 114

DEFINE.......cccovvnireniene. 67, 75, 82
derivative.......ccooeeveeceece, 28, 61
Development Kit.................. 7,8, 24
device programmers................. 8,14

directive...64, 73, 81, 86, 88, 91, 94,
97, 100, 105, 106, 109, 110, 111,
112

directory structure............cceevvneee. 18

Disassembly window........ 42,43, 44

DL .o, 100, 106, 110
DOC fOlder.....ccoecuvieeeiiiieeecieeees 18
DOCS........ccue.... See documentation
documentation.........ccccevveeeeevennnn. 11
DP..eeeee e, 100, 106, 110
DPTR . 69
DRWRCOPYccooovevvreerenn. 81, 86
DS, 100, 106, 110

dynamic memory requirements....58

ECL ..o 91
editor 13, 14, 21, 25, 61, 115
EJECT 89, 92, 95, 101, 111
EMA-51 ... 88
[1= 11
(S 1101 64, 73, 81
errors.. 11, 27, 45, 56, 59, 72, 80, 85
ESregister....ccoovnininiininiiene 74
evaluation boards...........cccceeeuueee. 18
example projects.......cccoevevereennnne 18
EXAMPLESfolder.......c.cocuvenee 18
executablefiles......coocvivcieeiecinnenn, 18
executable summary..........ccc...... 58
execution point............... 36, 44, 113
execution time......22, 36, 38, 39, 42
EXTEND....ccccoevveeeeeieeeee 64, 73
EXTREGS........coooeeeveeeeee 78, 91
EXTSTK .o 69, 86
far code......oocoeecieeiiiiiieee 74, 107
far data.....cocceeeeeveeeieeeeee e 74, 107
faridata......cccoceveeeecieiieeccieee e 107
FARCODE.......ccoooceveieeeeieen 107
FARDATAALLOWED................ 74
FARDATANOTALLOWED....... 74
= G 11
[N 107
[1 107
file extensions.......ccccceeeeeevecvnnneen. 16
filling memory..........ccocvcvninennnne 35
[=S o 103, 114
FLASH ..o 103

Page 118

Getting Started with the Raisonance Development Kits

Flashmode........cccoovvriinenienne. 103
floating pointcc..... 18, 65, 73
formfeed....... 67, 76, 83, 89, 92, 95,
101, 111
P 65, 73
function generator 35, 50, 51
Function Generator Options
WINAOWcovveieieircieeie e 50

(€1 = 89, 92, 95
GENERICcccovvvree 66, 74, 81
generic keyword............... 66, 75, 82
generic mode........cccoeceeveevieenenns 78
generic option...........c....... 66, 75, 82
generic pointers....66, 74, 75, 81, 82
GENERICFCTcoooveievierievieene, 78
green dot........cccceeveeeeeecieennen, 38, 42
Header File.....19, 28, 29, 55, 61, 62
hElP...ooe 11
Help FileS.....cveceeeeeee 18
HELPfolderccccooeovevviciiiiinne 18
Helpmenu.......ccooeveiecceec 11
Hex File............... Seelntel Hex File
hexadecimdl................ 34, 37, 40, 56
HUGE........ccoiieiecececeie 69, 78
O e 113,114
IDATA oo 57, 79, 100
identifier ..oocveeiee e 37
T 65, 73
[EEE-754 ... 65
INC foldercovvrevrienen. 18, 19, 61
In-Circuit Emulators............cc...... 14

Include Files..18, 67, 76, 83, 89, 92,
95

INCST6 Folder................. 18, 19, 61
indirect function cals................... 58
iInformation..........cceeeeeeeeveeececnnenn, 11
Input Files.......ccccovevveveenee. 15,114
Input StimMuli ...coeeeeeceeeeee e 50
instalation.........cccocevveeeiiiieeeens 9,17

installation folderccocvvuennee. 18

installation program..................... 17

Intel Hex File 8, 14, 16, 21, 25, 100,
106, 110, 113, 114

Intel MPL ..o 88, 91

Intel OMF-51.....cccovvieiieiecenee. 68

interrupt. 29, 30, 38, 39, 68, 74, 100,
113

Interrupt Service Routine 29, 38, 41,
42,74, 113

interrupt VECtors.........cccoceevereenee. 68
INTERVAL....ccoiiiiiiee 68
INTVECTOR.....ccooieiriieienine 68
INTXD i 69

IP66, 74, 81
1S66, 74, 81
ISRSee Interrupt Service Routine

IX e, 101, 106, 111, 112
Kerndl........... See RTOS and KR-51
KR-51. . eeeeeeeeeeeeeeeeeens 104
KR-XA e 108

LARGEccooevveeee 69, 78, 84
I O 67, 76, 83, 89, 92, 95
LIB folder......ccoouvvieiieeiiiiieecee 18
LIB-51...cceiiiiieeceee e 9

library....8, 9, 14, 15, 16, 18, 21, 44,
57, 66, 69, 70, 75, 82, 100, 102,
104, 106, 108, 110, 112, 114

Library File ... 16

Library Manager8, 9, 13, 14, 21,
114

LIB-ST6.....oceeeeeeeeeeee e, 9

LIB-XA oo 9

[iNKk Mapcoovveeiennee 57, 58, 101

Linker....8, 9, 13, 14, 15, 16, 18, 21,
27,31, 55, 57, 58, 99, 100, 101,
102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 114

Page 119

Index

Linker options......99, 100, 106, 110 Microcontroller family........... 9,114
Linker/Locator................ See Linker minimum system requirements.. See
LIST e 89, 92, 95 system requirements
Listing File....15, 16, 55, 56, 57, 67, MODS5L ... 88
76, 83, 89, 92, 95, 101, 114 MODS5L7 ..cooeviieeereeeiieeenns 69, 70
littleendian..........ccooovecveiieennne 65, 73 MODAMDcooveriieir e 69
LOADCS......cccvvereeeeieeiene 74,75 MODATM ..ooviiiiivceeeceseseenns 69
LOADES......ccooereeeiee 74,75 MODSTB......cccervereiierieeie e 9
LOCALOreeevvviieienieenenn See Linker module....... 14, 15, 56, 57, 101, 102,
low-level 1/Occovveeveiieee, 18 103,111, 114
[Y 9,112 module information...........c..c....... 56
M MODULEMAP......cccocvvveenns 111
MODXA ..ot 91
o 9, 97 MoOonitor............ 8, 18, 105, 108, 114
macro.....67, 76, 83, 89, 92, 95, 102, MPL oo See Intel MPL
113
MACRO oo 88, 91 N
macro expansions............. 67, 76, 83 NDT e 107
MakeAll.....ccoovvvecirnnne 27,31, 45 NDTSEG.....cccovveieiieiieieeieneens 107
Make window..........c.cceeuernenne. 27,31 Near COdeccovvrvvreeiieneeienes 107
manuals.........cccceeeeeeevnenne. 18, 55, 58 near data...........cccceeveeeieeireennenne, 107
Map File......15, 16, 55, 57, 59, 101, near idata.........ccoeeeeeveeieieeienns 107
106, 107, 111, 114 nesting levelccooevvieveenene 55
MA-STB .o 9, 97 NEHISE ..o 51
mathematical operations............... 18 NetsWindowcccceeveeeennee. 51, 52
MA-XA e 9,97 NID oo, 107
MAXERR.......c..ccocvrvnunne. 72,80, 85 NLIB oo 100, 106, 110
MAXWAR.ccooveveerenne 72, 80, 85 NOAREGS.......c.covievrceeree 71
MEDIUM ... 78 N\ [©72X U 1 1@ I 66
memory8, 14, 15, 18, 21, 22, 34, 35, NOCALLTREEcccceevvvenneen. 111
56, 57, 58, 66, 69, 70, 71, 74, 75, NOCDcoeveveieieieienns 67, 76, 83
78,79, 81, 82, 84, 101, 114, 115 NOCO ... 67, 76, 83
memory alocation..............ceeue... 18 NOCOND.......cccccvrirerenne 89, 92, 95
memory areas...22, 57, 58, 114, 115 NODBcccceu... 68, 77, 84, 93, 96
memory location...........ccccceeueeunne 34 NOE......occveeee e 51, 52
memory map............. 14, 15, 57, 101 \\[©] 5] I 100, 106, 110
memory moddl.....57, 69, 70, 74, 78, NODP.....c.cccrrrrrennnn. 100, 106, 110
79, 84, 114 NODS......cccovevririenns 100, 106, 110
memory requirements.15, 56, 58, 71 NOECLcoveveeeeeecee e, 91
memory specific pointers.66, 74, 81 NOEXTEND......ccoeevevvirenenn. 64, 73
memory viewing windows........... 34 NOEXTREGS........c..cccveuennee. 78, 91
Microcontroller..7, 8, 22, 24, 28, 29, NOGEN........ccoooveeeeeeeee 89, 92, 95
46, 50, 51, 57, 61, 66, 81, 105, NOGENERIC................... 66, 74, 81
108, 113, 114, 115 NOINTVECTOR.......ccccoverrenee. 68

Page 120

Getting Started with the Raisonance Development Kits

NOIP ..o 66, 74, 81
NOIS ..o 66, 74, 81
(O]), G 101, 106, 111
NOLIST ..o 89, 92, 95
NOLOADCS........cccoeverenrenne 74,75
NOLOADES.........cccooirnnn 74,75
NOMO......oooieireieeeeenes 91, 94, 97
NOMODS1.......ccooeiieieeeieeene 88
NOMODULEMARP.........ccceu.e. 111
NON PBGE 0 ..o 79
NOOBJECTcccecvvvurneene 90, 93, 96
NOOE.......ccooierirerieeeeeneeene 77
NOPR.....ooeiiereresenene 67, 76, 83
NOPRINT ..o 89, 92, 95
NOREGPARMSccoovvvvniene. 71
NOSAVESEG.......c.ccovinininiene. 74
NOSB............. 67, 76, 83, 89, 92, 95
NOSSS ..., 106
NOUSS.......coiereeeeeeeeeeeee, 106
NOXR ..o 89, 92, 95

OBJECT ..68, 77, 84, 86, 90, 93, 96,
97

Object File.8, 13, 16, 57, 68, 77, 84,
102, 112,113, 114

Object-Hex Converter ...8, 9, 13, 14,

OF ..o 68, 77, 90
OHSIXA .o 9
OHSTG ... 9
OMF-51............... Seeintel OMF-51
optimizations.............. 59,71, 79, 85
OptiMIZEr ...cocvveeeeeceene 71,79, 85
OT e 71,79, 85
PAJE O ..o 74,79
peripherd.......... 22,34,41, 114, 115
PHILIPSDDPTR.......ccccoveeiiinnnnne 69

PL ..67, 76, 83, 89, 92, 95, 101, 107,
111

pointer 37, 40, 46, 52, 66, 75, 79, 82

(010 0 o | o [53, 54

POSTOPT ..., 71,90
PP e 67, 76, 83
PR 67, 76, 83, 86, 97
PREPROST ..ot 9
PRINT .o 89, 92, 95
printf.......ccceeeenene 44, 100, 106, 110
Program Counter 48,113, 114

project ... 7, 8, 13, 14, 15, 18, 21, 24,
25, 26, 27, 28, 31, 45, 57, 58, 63,
65, 73, 87, 99, 101, 102, 114, 115

Project File.... 16, 24, 26, 31, 58, 63,
87,99, 114, 115. See Project

Project managerccceeeeveveenenne 25
ProjeECt tree ..o 26
Project windowcccc.e...... 25, 26
PRSTATICSIZEcccccevvenne. 110

PW.67, 76, 83, 89, 92, 95, 101, 107,
111

Raisonance Integrated Devel opment
Environment................. SeeRIDE

RAM 17, 70, 84, 100, 101, 105, 106,
108, 110, 113, 114

RAMSIZEINITccooveieeeeene, 110
RB ..o 71,90
RC-51...ciiiiieiieeneee e 9, 86
RC-ST6.....ceoveeeeeceecieee 9, 86, 97
RC-XA e 9, 86
red Darccoveveeenenieneee 38,41
red dotcccoeveveeeseee e, 41
reentrant 66, 69, 100, 102
reentrant stackcccceeveerireennn. 69
reference map.......ccoceeveveeeieereeenne. 58
REFLASH.......cooiiriiieeree 103
Register windowccccceeeveuenne 43
registerbank..........ccocceveeinnens 71,90
registers... 22, 43, 68, 71, 74, 78, 88,
91,94
REGPARMS.......cccooeveiveee e, 71

Relocatable Object File... 13, 14, 68,
77,84, 90, 93, 96, 113, 114, 115
RESERVE.........cccovviieeiieeie, 103
(S5 S RY/< i (o] (RN 100

Page 121

Index

RIDE..7, 8, 9, 11, 13, 14, 16, 18, 21,
22,23, 24, 25, 29, 32, 33, 36, 38,
42, 46, 50, 55, 57, 61, 63, 87, 99,
105, 108, 115

ROM96, 101, 105, 108, 110, 113,
114

ROMFILL ..o 96, 97

ROMFILLRESERVEDVALUE 110

ROMFILLUNUSEDVALUE110

ROM-Monitor See Monitor
RS 100, 106, 112
RSI .. 100, 106
RTOS.....cooeieeeeeeeen, 78, 104, 108
SCfilen s 68, 77, 84
SAVESEG....ooieiiieeee 74, 86
SB..... 67, 76, 83, 86, 89, 92, 95, 97

Semaphores........ccceeveveeeneene. 104, 108
S 88, 91, 94
SIGNEDCHAR................. 66, 74, 81
simulated external stack 69, 70

simulation 22, 35, 36, 38, 41, 42, 44,
47, 48, 53, 58

Simulator...7, 13, 14, 21, 22, 28, 44,
115

single-precision floating point......65
SMALL oo 69, 78, 84
Source Code window 36, 37, 43

Source File.8, 13, 14, 15, 16, 18, 19,
21, 25, 26, 28, 31, 56, 57, 63, 68,
77, 84, 86, 87,97, 113, 114, 115

Sources sub-folder..........ccoeeeuneene. 18

Specia Function Register18, 19, 28,
29, 37, 61, 62, 88, 91, 94, 115

(S0 1|1 100, 106
square wave..........cceeeuven. 48, 51, 52
SRC ... 68, 77, 84
SSEL ...ttt 75
SSELINIT i, 75

SSS. 106, 112
SSTACK ..o 107
SSTKOV ..o 107

ST6....1, 7,9, 13, 15, 16, 18, 19, 24,
28, 30, 52, 57, 58, 61, 81, 83, 84,
85, 94, 95, 96, 110, 111, 115

stack ..58, 66, 69, 70, 100, 102, 106,
107

Standard C Libraries........c.ccc..... 18

Standard C Library functions.......18

startup code ... 18, 36, 66, 69, 74, 81,
100, 106, 115

S (1] = S 36
SEP INLO e 42,43
SITUCE.....vvveeiee e, 64, 73, 81
SUE OPT.....coevvviieeeeeene 64, 73, 81

symbol table..15, 56, 58, 59, 67, 76,
83, 89, 92, 95, 115

SYNTAX o 88
system mode.........cceeeevenciininnns 78
system requirements..................... 17
system stack 107. See stack
SYSTEMFCT ... 78
TASKS. ... 104
Telephone........ccccecveveeiceeciecien, 11
tick rate...cccveeeieceieeeeeee e 104, 108
timer29, 30, 38, 39, 41, 100, 106,
114, 115
TINY o 69, 78
TO s 112

tool7, 8, 9, 13, 14, 15, 16, 18, 21,
26, 29, 57, 61, 114

toolbarccoceeeeevveeen. 27, 36, 44, 115
tracelist...coeeeecieececeeeeceen, 46, 53
Trace Options window 47
tracerecords..........couen.. 48, 49, 53
Tracewindow................... 47, 48, 53
UART oo 105, 108, 114
(U0 To] o 64, 73, 81
UNSIGNEDCHAR........... 66, 74, 81

Page 122

Getting Started with the Raisonance Development Kits

USEr MOAE......ceeeeieeeeeeeireee e, 78
USEr SEACK v 106
USERFCTooeeeeevieeeeee e 78, 86
USS ..., 106
USTKOV ... 107

variable....29, 30, 34, 37, 40, 46, 54,

58, 59, 77
(V0 = 11 [59
VonNeuman............coeeen. 105, 108

warnings..27, 31, 45, 56, 59, 72, 80,
85
Watch window 40, 41, 46, 52

WatChPOINES........oeveeveeeiecciee s 40
waveform .46, 48, 49, 50, 52, 53, 54
waveform expression................... 51
WED SItES....cceivveierieeee e 11
WL e 72, 80, 85
XA....1,7,9, 13, 15, 16, 18, 24, 28,

30, 52,57, 61, 73, 74, 76, 77, 8,
79, 80, 91, 92, 93, 106, 107, 108,
115

XDATA ..o, 70, 100, 104
XEVA L 105, 108
XRo 89, 92, 95, 97
XRAM ..o 69

Page 123

Getting Started with the Raisonance Development Kits

Notes

Page 124

Getting Started with the Raisonance Development Kits

Notes

Page 125

Getting Started with the Raisonance Development Kits

Notes

Page 126

Getting Started with the Raisonance Development Kits

Notes

Page 127

Getting Started with the Raisonance Development Kits

Notes

Page 128

