

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 1 of 95

Unleashing the PropellerTM
 C3

by André LaMothe

Overview
Welcome to “Unleashing the Propeller C3.” This hands-on guide covers the design and hardware of
the C3 as well as numerous demos and tutorials to get you going fast. First and foremost the C3 is a
Propeller-based product, so everything you know about the multicore Propeller microcontroller applies. If
you’re a seasoned expert then you might just want to skim this manual focusing on the SPI bus, pin outs,
and peripherals since that’s all you need to get started. However, if you’re new to the Propeller chip then
you will want to read this manual carefully as well as take a look at the numerous online and printed
manuals covering the Propeller chip. Start here at the Parallax Propeller site to see what’s available
online:

www.parallax.com/propeller

Specifically be sure to review these documents especially:
 Propeller Manual (from the Propeller Downloads link)

 Propeller Datasheet (from the Proeller Downloads link)

 Propeller Questions & Answers system (from the Propeller Q&A link)
Also, there are a number of printed books about the Propeller you might want to pick up and read:
 Programming and Customizing the Multicore Propeller Microcontroller, Parallax.

 Game Programming for the Propeller Powered HYDRA, André LaMothe.

 Programming the Propeller with Spin, A Beginners Guide to Parallel Processing, Harprit Sandhu.

This manual does not teach you Spin, assembly language, graphics, or how to write drivers for the
Propeller chip. This manual only covers the Propeller C3 hardware platform and software demos that come with it.
If there is particular material that is beyond the scope of this manual, I will refer you to one of the books above in
many cases. Of course, I hope you by default read the Propeller Reference Manual itself!

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 2 of 95

Table of Contents

1 Quick-Start Guide ... 4

1.1 Demo Test: Power-Up with No PC .. 5
1.2 Demo Test: Compile & Download from PC.. 8

2 Hardware Overview .. 10
2.1 System-wide Pin-out Reference .. 14

2.1.1 Tri-Ports Headers ...14
2.1.2 Tri V-Selects Jumpers ..15
2.1.3 Analog Port Header ..15
2.1.4 Port A Header ...16
2.1.5 Port B Header ...16
2.1.6 SPI / I2C Header ...17
2.1.7 System / Power Header..17

2.2 Power Management ... 18
2.3 Propeller Processor System .. 19
2.4 SPI Bus System ... 21

2.4.1 SPI Channel Allocations ...24
2.5 USB Serial Communications.. 25
2.6 Composite Video.. 26
2.7 VGA Video / IO Buffer .. 27
2.8 Audio System ... 29
2.9 PS/2 Keyboard/Mouse Port ... 30
2.10 FLASH Memory System... 31
2.11 32K x 2 SRAM Design ... 32
2.12 A/D System .. 34
2.13 Secure Digital (SD) Card Interface .. 36
2.14 Adding SPI Devices to the Propeller C3 .. 38

3 Demos and API ... 38
3.1 What to Expect... 38
3.2 System Setup for the Tests and Demos .. 39
3.3 Local Version Demos (PS/2 + NTSC Monitor)... 40

3.3.1 Keyboard & Mouse Demo...40
3.3.2 VGA Demo ...42
3.3.3 Audio Demo..43
3.3.4 Port A/B IO Demo...45
3.3.5 NES Gamepad Demo...47
3.3.6 Servo Port Demo ..48
3.3.7 SPI Bus API Overview..52
3.3.8 SRAM Demo...56
3.3.9 Simple A/D Demo ...64
3.3.10 A/D Plus SRAM Demo..66
3.3.11 FLASH Memory Demo..67
3.3.12 SD Card Demo ...77

3.4 Serial Version Demos (Using USB UART) .. 83
3.4.1 Setting up for the Demos ..83
3.4.2 Port A/B Demo..84
3.4.3 NES Gamepad Demo...84
3.4.4 Servo Port Demo ..84
3.4.5 SRAM Demo...84

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 3 of 95

3.4.6 A/D Demo ...84
3.4.7 A/D Plus SRAM Demo..84
3.4.8 FLASH Memory Demo..85

4 Porting Applications from other Boards to C3 .. 85
4.1 Propeller Chip, Reset, and Clocking .. 85
4.2 Porting VGA Drivers... 85
4.3 Porting Composite Video Drivers... 85
4.4 Porting Audio Drivers ... 86
4.5 Porting PS/2 Drivers... 86
4.6 Porting SD Card Drivers... 86
4.7 Supporting NES Controllers for Games... 86
4.8 USB Serial Considerations .. 86
4.9 EEPROM Support .. 87
4.10 Power Supplies .. 87
4.11 Porting HYDRA Applications.. 87

4.11.1 Propeller Chip, Reset, EEPROM, and Clock ..87
4.11.2 Composite Video ..88
4.11.3 Audio ..88
4.11.4 VGA..88
4.11.5 PS/2 Port(s) ..88
4.11.6 HYDRA Game Ports ...88

4.12 Porting Parallax Propeller Demo Board Applications .. 89
4.12.1 Propeller Chip, Reset, EEPROM and Clock ...89
4.12.2 Composite Video ..89
4.12.3 Audio ..89
4.12.4 VGA..90
4.12.5 PS/2 Port(s) ..90

5 Summary ... 90
6 Appendix ... 90

6.1 Propeller C3 System Schematic .. 91
6.2 PCB Mechanical Layout w/Dimensions ... 92
6.3 Gerber Images ... 93
6.4 IO Header Pin out Close-up... 94
6.5 FTP Site Layout ... 95

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 4 of 95

1 Quick-Start Guide
In this brief quick-start guide, we are going to review the Propeller C3 board briefly, plug it in, power it
up, and download a demo to it. This will confirm everything is working properly as well as familiarize you
with the C3 board itself.

First off, take a look at Figure 1.1 which is an annotated image of the C3. Take a moment to review all
the interfaces and location of various chips. Later we will drill down closer and each of the IO headers will
be illustrated, but for now, just get a birds-eye view of the board.

Now, that you have an idea of what goes where, let’s go ahead and plug the board in and power it up!
The Propeller C3 comes pre-loaded with a test suite that exercises all the hardware including the optional
microSD card and NES adapter. Don’t worry if you don’t have these, the test will just ignore them or print
out appropriate information.

Figure 1.1 — Annotated Propeller C3 Board

! The Propeller C3 Is designed to accept power from the USB port OR from an external power supply. Do
not simultaneously supply power from more than one source. Before supplying external power be sure to
remove the USB cable, otherwise damage to the C3 and your computer may occur.

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 5 of 95

1.1 Demo Test: Power-Up with No PC
The demo test suite comes pre-loaded on the C3; it tests out the entire board including NTSC, VGA, PS/2
keyboard, microSD slot, A/D converter, sounds, status LED, and IO header. However, all you need is the
C3 unit and an NTSC TV or VGA at minimum along with an external power supply. But, if you want to test
everything out and hook everything up, you will need the following:

 NTSC TV/monitor

 VGA Monitor

 PS/2 Keyboard

 Parallax NES Gamepad Adapter (part #32368)

 A NES compatible gamepad

 MicroSD card formatted FAT16

 Simple potentiometer circuit to test 2-channel A/D converter.

 7.5–9 VDC 300 mA, 2.1 mm ID, 5.5 mm OD, center positive power supply

Figure 1.2 — The Propeller C3 with everything hooked up.

Step 1. (Prepping Connections) — Make sure the power switch on the C3 is in the OFF position to the

right. Now, hookup your C3 as shown in Figure 1.2, but WITHOUT the USB connection. If you’re
hooking up the A/D converter, NES gamepad adapter, and/or SD card, follow all the steps;
otherwise skip to Step 5 on page 8.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 6 of 95

Figure 1.3 — Close-up of correct insertion of Parallax NES adapter into C3

Step 2. (NES Adapter / Optional) — If you have a Parallax NES Gamepad Adapter and NES-compatible

gamepad then you can interface it to the C3. Later in the manual we will discuss how the
interface works, but for now, simply insert the game pad adapter into the C3 main header as
shown in Figure 1.3. Notice that only one row of the NES adapter is inserted into the main 2x16
header of the C3. The correct position is at the bottom/left of the 2x16 header as shown in the
figure above.

Step 3. (A/D converter / Optional) — The C3 has a dedicated 2-channel 12-bit analog to digital converter

(Microchip MCP3202) on the system SPI bus. The test suite displays the voltages on each
channel. If you don’t plug anything into the A/D channels they will pick up random noise;
however, if you inject a signal into each channel then the test suite displays the values of each
channel 0..5 V as a 0..4095 on the screen. A simple circuit to generate a variable voltage is
shown in Figure 1.4. Basically, the A/D port labeled top to bottom is Analog 1, Analog 0, +5 V
and ground. So, you can power a simple voltage divider or potentiometer circuit as shown in the
figure. The 5 V is placed across two potentiometers (1 k–100 kΩ will do), and the wiper of each
is connected to the analog inputs. As you turn the potentiometers the voltage on the wiper will
vary from 0 to 5 V and hence the value read by the MCP3202 will vary 0 to 4095.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 7 of 95

Figure 1.4 — A/D test circuit

Step 4. (MicroSD card / Optional) — The C3 has an SPI-based microSD slot with spring-loaded insert and

eject (push-push). If you have a microSD card, you can insert it and the test suite will mount the
card and read the partition tables. The C3 will not write anything to the card. Note: You must use
a FAT16 formatted SD card.

Figure 1.5 — C3 hardware boot screen

Figure 1.6 — C3 Test and Q/A suite running on NTSC screen (left) and on VGA Screen (right).

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 8 of 95

Step 5. (Run the test suite) — You should have your C3 all hooked up now, so its time to power it up and
watch the test suite run. Slide the power switch to the ON position which is to the left.
Depending on what you have hooked up to the C3, it will drive the VGA, NTSC, and all other
peripherals. First, you will see a brief “C3 boot screen” as shown in Figure 1.5, then the main test
suite will start running as shown in Figure 1.6 (left). Additionally, if you have a VGA monitor
connected to the C3 you will see the image shown in Figure 1.6 (right) as well. However, this
display is static and only verifies VGA functionality. Thus, you need an NTSC display to get the
full use of the test suite. The test suite is composed of three primary tests:

 Audio/Visual Inspection Tests — These are simply tests you do yourself and verify.

 Self Tests — These tests are automated and run themselves.

 Interactive Tests — These require your input and extra peripherals.

The self tests test the onboard FLASH memory, SRAM banks, SD card (if inserted) and then fall through
to the interactive tests. These tests require your input and display the status of the PS/2 keyboard (if
plugged in), gamepad (if plugged in), and finally the A/D converter if you inject 0..5 V signals into either
or both of the A/D channels.

That completes the power-up test. Next, let’s move onto compiling and downloading the demo.

1.2 Demo Test: Compile & Download from PC
In this part of the Quick-Start we are going to use the Propeller Tool IDE to compile and download the
test suite to the C3. If you’re already proficient at using the Propeller Tool then you can skip this section,
but if you’re a new user then you should follow along.

 This manual doesn’t teach Propeller programming, Spin, or using the Propeller Tool. For those subject
areas, please refer to the resources outlined in the Overview section above, which lists online and printed manuals
you should read.

Step 1. (Disconnect external power) — If you performed the Power-Up Test in the last section,

discoonect the power supply from the C3 now.

Step 2. (Install USB Drivers) — Before connecting your C3 to your PC for the first time, you need to

install the FTDI Inc. USB VCP drivers. They are included with the Propeller Tool programming
software, free from the Downloads link at www.parallax.com/propeller. The FTDI Windows driver
installer is also available on its own from www.parallax.com/usbdrivers; for other options check
www.ftdichip.com/FTDrivers.

If the FTDI drivers are installed, the moment you insert the USB cable into the C3 for the first time even with
the power off, the PC will recognize and install the proper FTDI Inc. VCP on your PC. This is normal, and not to
worry. When the installation is complete you should see a small message in your Windows system tray to the right
indicating that the hardware was installed properly and is ready for use. Curious users might even want to open up
the PC’s Control Panel → Hardware Settings and take a look at what virtual COM port number the USB is using.

Step 3. (Prepping connections) — Hook up all the other connections as shown in Figure 1.2, EXCEPT the

power supply.

Step 4. (Downloading the IDE) — if you haven’t installed the Propeller Tool then you should do so now.

You can download the latest copy of the tool the Downloads link on this page:

http://www.parallax.com/propeller

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 9 of 95

Download the latest Propeller Tool software and install the program. The program has a very
detailed Help system and reference guide, please review that.

Figure 1.7 — The Propeller Tool up and running.

Step 5. (Running the IDE) — Once you are up to speed on the IDE, it is similar to any compiler tool you

have used before. Launch the tool and you should see something similar to the screen shot
shown in Figure 1.7. Next, we need to load the test program into the IDE.

Step 6. (Downloading the C3 software and demos to your hard drive) — Log onto the Parallax FTP site

containing the source tree for the Propeller C3. The FTP site is anonymous, so all you have to do
is click on the link below in your browser:

ftp://ftp.propeller-chip.com/PropC3

 The directory structure is shown below:

 PropC3\ - Root directory.

Docs\ - Contains documents relating to the C3, datasheets, etc.
 Sources\ - Contains source code and examples from this manual.
 Games\ - Contains games that have been ported or originals.
 Apps\ - Contains applications, languages, and other apps for the C3.
 Designs\ - Contains designs for the C3 including schematics and gerbers.
 Tools\ - Contains tools and programs for the C3.
 Media\ - Contains any extra media for the C3 or videos, audio, etc.
 Goodies\ - Contains any goodies that are special.

UPDATE_LOG.TXT - Changes to the FTP directory are logged here.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 10 of 95

Next, drag and copy the Sources\ directory to your hard drive (this will take a few moments to
copy). If you have a very fast internet connection and don’t mind waiting a little longer you can
drag the entire root directory PropC3\ to your hard drive at once, so you don’t have to copy any
files later on required. But, for now the Sources\ sub-directory will do. Also, I suggest placing it in
a directory called PropC3\ even if you don’t drag the entire root directory to your hard drive to
keep your directory structure consistent with what is expected in this manual.

Step 7. (Loading the test suite into the Propeller Tool) — Now that we have the source tree on your

hard drive, let’s load the test suite into the Propeller Tool. From the Propeller Tool’s main menu,
<Select File → Open>, navigate into the Sources\ directory on your hard drive and load the
following file into the IDE:

c3_unit_test_010.spin

This is called a “top object file” in Spin-speak. When you compile the program it will actually
refer to other files within the same directory and load those as well, but you won’t have to worry
about that—the IDE will handle it for you, identify the required files and load them from the
source directory.

Step 8. (Compiling and downloading the program to the C3) — At this point, we are ready to compile and

download the program to the C3. Make sure the C3 is plugged into the PC via the USB cable, and
the C3 is powered ON (switch to the left). To compile and download the program to the C3,
simply press the <F11> key (you can also, select <Run → Compile Current → Load EEPROM>
from the main menu). You should see a dialog box pop up and display the status as the program
compiles and downloads to the C3. After the download, the C3 will automatically re-boot and the
test suite will run as it did out of the box.

This concludes the Quick-Start guide, now let’s move onto the Propeller C3 design itself.

2 Hardware Overview
In the section of the manual we are going to review each of the hardware sub-systems of the C3 and see
how they work. Even if you’re not an electrical engineer or familiar with electronics, you should be able to
follow most of the material and get something out of it. It can’t hurt to understand the hardware to help
write better software!

The approach I am going to take is we are going to start with a high level overview of the C3 for a few
paragraphs and then drill down to each sub-system, look at the schematic and I will bring your attention
to anything interesting. Additionally, realize that the C3 like any Propeller development board follows a lot
of the same design rules, so if you have a Propeller Demo Board, HYDRA, or other Propeller-based
device, many design elements should be familiar to you. With that said, let’s begin…

The Propeller C3’s design was predicated upon creating a very small, credit card sized board to show off
what the Propeller can control in a system-wide design. Thus, the C3 is truly complete with extra RAM,
FLASH, IO, and SD drive all built in—it’s a true credit card sized computer with an arsenal of peripherals.
On the other hand, we wanted all drivers written for the Propeller chip and/or other boards to be easy to
port, thus we had to design a bus system that had minimal IO impact, but allowed any number of SPI
based devices to be access over a common bus. Thus, in the tradition of old 8-bit computers and the IBM
PCs, the Propeller C3 has a simple SPI bus that is used to interact with all its new peripherals such as
RAM, FLASH, SD card, A/D, and more. This flexibility not only allows the porting of other applications that
don’t use these features to be very easy, but opens up a whole world of applications.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 11 of 95

Figure 2.1 — The system-wide Propeller C3 schematic-

Referring to Figure 2.1, this is the complete schematic of the C3 in a single view. Don’t worry if you can’t
see it clearly, I just want you to get an idea of what’s what, so I have color-coded the various areas of
the design, so I can point them out in the paragraphs that follow. A high resolution bitmap of the image
can be found in the FTP files in the following location, so you can see more detail (color coded and b/w
version):

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_lrg_colored_01.png
PropC3 \ Designs \ Schematics \ prop_c3_rev_a_lrg_01.png

Referring to the figure, starting from top left and moving left to right, top to bottom, we have the
following sub-systems:

A. Power Management (top left; red color coded) — A pair of ST LD29150 voltage regulators one for
the 5.0 V and the other for the 3.3 V supply. These regulators can source up to 1.5 A of current.

! The Propeller C3 Is designed to accept power from the USB port OR from an external power supply. Do
not simultaneously supply power from more than one source. Before supplying external power be sure to
remove the USB cable, otherwise damage to the C3 and your computer may occur.

B. Propeller P8X32A (top middle, green color coded) — The Propeller chip along with bypass
capacitors, 64 KB EEPROM, reset switch, and crystal input.

A

C B

D

E

F

G

H

I

J

K L

M

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 12 of 95

C. PS/2 Port (top right, brownish color coded) — This is the standard PS/2 port accepting keyboards
and mice. There is only one PS/2 port on the C3. If you don’t use the PS/2 port then the two IO lines can
be used for other things, so they are exported to the system headers on the right side of the board.

D. Servo Port Header (middle left, cyan color coded) — The Propeller C3 can only source and sink so
much current, so it can’t really drive servos without external power. However, if you are careful and
heavily bypass the power lines, you can directly drive servos as long as the power supply spikes don’t
reset the Propeller. The C3 has 4 servo port compatible headers with the standard 3-signal pin out
(signal, power, ground). The control signals for each port are connected to P4 thru P7 on the Propeller.
Also, each servo port’s power is jumper selectable between 3.3 V and 5 V and heavily bypassed for
current spikes. Finally, each servo control line has an inline series current limiter resistor which not only
protects the PropellerIO from any inductive kicks, but acts as a transmission line dampener, so you can
run larger 1–2 foot cables from the header and the signal integrity will remain reasonable. Of course, no
one said you have to control servos with these headers, many Parallax customers simple like the clean
3-pin servo cables to use on their projects, thus we added the feature to the C3.

Adding a Bulk Capacitor for Driving Servos—Next to the 2.1mm ID, 5.5 mm OD, center positive power input
header, there are two plated through holes designed for a large bulk capacitor. If you are going to drive servos then
I suggest placing a 2200–4700 µF electrolytic capacitor across the + - ports and solder it under the board (ground
to left, positive to right).

E. SPI Bus System (middle; violet color coded) — The majority of extra peripherals on the C3 are
connected through a high-speed SPI bus that all the peripherals share. The SPI bus is capable of 25 MHz
signaling, so it’s very fast. Of course, parallel access is always faster, but accessing a parallel memory for
example can use up 20 IO lines just for a 16 KB SRAM! The SPI protocol requires 4 signals per device:
serial out, serial in, clock, and a chip select. The first three can be shared, but the last—chip select—
can’t. This signal needs to be generated independently for each device. A trick is used on the C3 to
reduce the IO impact of these chip select requirements. Instead of using a separate IO line for each chip
select, we could use 2 of them and a decoder to select 1 of 4, but we need more chip select lines, thus
using 3 IO lines would give us 1 of 8, but that single line was just too much. So, the trick is that we use 2
lines to select up to 16 devices (actually 8 are only needed). The 2 IO lines control a 4-bit counter, and
its reset. Thus, as we clock the counter it counts then the output of the counter routes into a 3-8
decoder. Of course, only a single SPI device can be selected at once since they share a common bus, but
this isn’t a problem in most cases and this is how all bused computers work, one device uses the bus, and
they share.

F. FTDI USB Serial UART (right side under PS/2 port; yellow color coded) — This is a standard FTDI
FT232BL USB serial UART chip along with a little DTR reset circuit, so the Propeller can be reset via the
serial interface before programming. The USB +5 V can also used to power the C3 when external power
is not being applied. Do not draw more that 500 mA when running off of the USB port.

G. System-wide IO Headers (left side to right of servo headers; magenta color coded) — These are
simply all the IO headers for the C3. They include the 2x16 rows of IO on the right side of the C3 board
as well as the microSD header/slot and A/D port.

H. 1 MB SPI FLASH Memory (middle under the SPI system; color coded aqua) — The SPI FLASH on
the C3 is a 8 Mbit / 1 MByte page organized FLASH memory from Atmel Inc. part #AT26DF081A-SSU.
FLASH memories are somewhat interchangeable since they follow JEDEC standards, but each
manufacturer likes to add their own little features which break the standard. Thus, on the C3 we have
the Atmel part specifically, so I could write a driver that I know works.

I. 32 KB SPI SRAM Banks (middle under the FLASH memory; color coded orange) — The C3 has a
pair of 32 KB SPI SRAMs giving a total of 64K bytes of external memory to work with. SPI SRAMs are
relatively new technology and only a few vendors manufacture them in such large sizes. The SPI SRAMs
used on the C3 are Microchip’s 23K256.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 13 of 95

J. 2-Channel 12-bit SPI Analog to Digital Converter (middle bottom under SRAMs; color coded
dark green) — The C3 has a dedicated A/D converter. Although, it’s possible to perform software A/D
with the Propeller, the processing load and allocation of a cog to the task isn’t a good use of the
resource. Thus, the C3 has a Microchip SPI based MCP3202 2-channel, 12-bit A/D. It can sample two
single ended signals (0..5 V) or one differential signal. The MCP3202 was chosen for its ease of use and
availability; there are already drivers for it in the Parallax Object Exchange.

K. Status / VGA Enable LED (middle to right of FLASH memory; color coded light violet) — What’s a
development board without at least one LED! Well, the IO is so optimized on the C3, I couldn’t even
spare a single IO to dedicate to an LED. Therefore, I multiplexed the status LED with the VGA buffer
enable which as its name states “enables” the VGA buffer to the VGA header. Thus, if you need to blink
an LED, you can toggle this IO line, but be aware if you are using VGA at the same time, it will disable
the display momentarily.

L. Composite Video and Audio (right middle; light brown color coded) — Standard Propeller composite
video and audio circuits here. The composite video simply has a 3 resistor summing circuit and the audio
has a PWM low-pass filter/integrator.

Some Propeller designs use 4-signals for composite video. The 4th signal was an aural signal used for
broadcast video. This feature is rarely used, thus, better to free up the signal for other uses. Nonetheless, some
more advanced Propeller graphics drivers actually use the aural carrier signal to generate more color. But, the C3
isn’t a game machine, so we can do without a few more colors.

M. VGA System and Buffer (right bottom left under composite video; color coded purple) — The VGA
output of the C3 is similar to other Propeller designs in that it uses 8 signals in parallel to control RGB
along with Hsync and Vsync. However, the C3 (similarly to the HYDRA) has a tri-stateable buffer (a
standard 74LVC245A, to the left of VGA header on schematic) from the Propeller to the VGA allowing the
VGA connector (if attached) to be electrically removed from the Propeller IO bus (IO P16..P23). This
allows non-VGA applications to re-use and multiplex Propeller IO signals P16..P23.

This concludes the brief review of each sub-system. We will go much further into detail in the sections
below, but hopefully now you have an idea of how everything fits together.

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 14 of 95

2.1 System-wide Pin-out Reference
In this section, we are going to briefly review the Propeller C3 IO pin outs in tabular format for ease of
access. Also, this will help as you review each of the system schematics in the sections below.

Figure 2.2 — Propeller C3 PCB layout

Figure 2.2 depicts a mechanical layout of the Propeller C3 PCB. Let’s briefly review the headers and
jumpers and review the signals for each header from the Propeller chip.

2.1.1 Tri-Ports Headers
The C3 supports (4) servo port female connectors (Parallax part #805-00001). These are convenient
cables that are commonly used to route control and power signals to servos, but can be used for
anything you wish. They are color coded with [white, red, black] mapping to [signal, power,
ground]. This same signal order is used on the C3 as depicted by the same colors, so you can plug them
as shown in Figure 2.2 above the “Tri-Ports” label with the blue tint. There are 4 vertically oriented
servo connector ports with ground always on the bottom. Next, the middle pin moving upward is power
(3.3 V or 5.0 V), and finally the topmost pin on each header is the signal pin. These signals come from
the Propeller chip, P7..P4 respectively left to right on the Tri-Ports. So, all you have to do is plug a cable
into one or more of the 4 headers in a vertically oriented way, with ground at the bottom and then you
can signal on Propeller IO pins P7..P4 to control your device or servo.

Additionally, you can select the voltage on each of the servo ports and set it as 3.3 V or 5.0 V. This is
accomplished by setting the jumpers to the right of the Tri-Ports themselves shown in green.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 15 of 95

2.1.2 Tri V-Selects Jumpers
Each of the servo ports left to right, P7..P4 has a power pin used to drive the device. The power pin can
be set for 3.3 V or 5.0 V. This is accomplished via the jumpers to the right of the Tri-Ports labeled “Tri V-
Selects”. These jumpers are individually labeled JP7..JP4 as shown in Figure 2.2 tinted in green. When
a particular jumper is in the topmost position it sets the associated power on the servo header to 3.3 V
and when in the bottom position it sets it to 5.0 V. For example, in Figure 2.2, the jumpers are set as
follows:

JP7 — Bottom position, Servo Port P7 (left most on the Tri-Ports) will have 5.0 V at its power pin.
JP6 — Top position, Servo Port P6 (2nd from left on the Tri-Ports) will have 3.3 V at its power pin.
JP5 — Bottom position, Servo Port P5 (2nd from right on the Tri-Ports) will have 5.0 V at its power pin.
JP4 — Bottom position, Servo Port P4 (rightmost on the Tri-Ports) will have 5.0 V at its power pin.

Of course, most servos are 5.0 V, so you would put all the jumpers in the lower position in most cases.

2.1.3 Analog Port Header
To the right of the Tri V-Selects and left of the SD card header is the Analog Port Header. This is where
you can sample analog signals 0..5 V and they are fed into the MCP3202 SPI 2-channel A/D. The signals
on the header are oriented top to bottom as shown in Table 2.0.

Table 2.0 – Signals top to bottom on Analog Port Header.

Signal Name Propeller IO(Pin) Description

AN0 N/A Connected to analog input channel 0 of MCP3202

AN1 N/A Connected to analog input channel 1 of MCP3202

5.0V N/A Connected to system power 5.0 V

GND N/A Connected to system ground (analog reference)

You must always reference the analog inputs from the ground pin GND. Additionally, you can power your
external analog device from the +5.0 V pin if you wish. Either way, the A/D converter expects a voltage
range of [0..5 V] at its inputs which will be converted into an integer [0..4095]. If you need more range
then use a voltage divider or scaler.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 16 of 95

2.1.4 Port A Header
The Port A header is on the right side of the PCB, next to the SD card socket. It consists of 8 signals,
connected to Propeller IO pins P7..P0 (top to bottom) as shown in Table 2.1. Also, note that P7..P4 is
shared with the servo port signals, so if you drive something connected to the servo port headers, make
sure to disconnect anything sharing P7..P4 on the Port A header.

Table 2.1 — Signals top to bottom for Port A Header (General IO Port).

Signal Name Propeller IO | Pin Description

P7 P7 (4) General IO, also connected to servo port header P7

P6 P6 (3) General IO, also connected to servo port header P6

P5 P5 (2) General IO, also connected to servo port header P5

P4 P4 (1) General IO, also connected to servo port header P4

P3 P3 (44) General IO

P2 P2 (43) General IO

P1 P1 (42) General IO

P0 P0 (41) General IO

2.1.5 Port B Header
The Port B header is right above Port A and consists of 8 signals connected to Propeller IO pins P23..P16
top to bottom as shown in Table 2.2. These IO pins are also shared by the VGA port on the C3, so if you
are driving a VGA monitor then these IO signals will reflect those signals. Additionally, there is a buffer on
the VGA signals in front of the VGA header itself. You can disable this buffer so that even if you have a
VGA monitor connected to the VGA port, the impedance will not disturb the IO pins on Port B. To
enable/disable the VGA buffer you use Propeller IO pin P15 which is called STATUS_LED_BUS_MUX in
the Propeller C3 schematic. Setting this signal low enables the buffer, high disables it (more on this
when we discuss hardware in detail).

Table 2.2 — Signals top to bottom for Port B Header (General IO Port shared with VGA).

Signal Name Propeller IO(Pin) Description

P23 P23 (26) General IO, also connected to VGA_RED_B1.

P22 P22 (25) General IO, also connected to VGA_RED_B0.

P21 P21 (24) General IO, also connected to VGA_GREEN_B1.

P20 P20 (23) General IO, also connected to VGA_GREEN_B0.

P19 P19 (22) General IO, also connected to VGA_BLUE_B1.

P18 P18 (21) General IO, also connected to VGA_BLUE_B1.

P17 P17 (20) General IO, also connected to VGA_HSYNC.

P16 P16 (19) General IO, also connected to VGA_VSYNC.

Port A and B headers are not to be confused with I/O port designations on the Propeller chip internally. The
design has a port “A” which refers to the normal 32 bits of I/O on the Propeller chip, and a Port “B” which refers to
an additional 32 bits of I/O for future expansion. This has nothing to do with Port A and B headers on the C3, they
are just names on the PCB.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 17 of 95

2.1.6 SPI / I2C Header
The SPI / I2C header is to the right of the Port A header along the right edge of the PCB. The header
consists of 8 signals that export out the SPI bus (plus 2 unused SPI chip selects), I2C bus, and ground,
top to bottom as shown in Table 2.3 below. The SPI bus logic is not built into the Propeller, but it is
created by the program running on the Propeller, which sends data out the SPI bus one bit at a time. The
I2C bus, once again is not implemented in discrete logic, but the Propeller uses software to follow the I2C
protocol to boot the EEPROM, thus we have exported out these two IO pins, so you can place other I2C
devices on this bus. But, as usual, in both cases of SPI and I2C you must bit-bang the protocols yourself.

Table 2.3 — Signals top to bottom for SPI / I2C Header.

Signal Name Propeller IO (Pin) Description

SS7 NA (generated internally) SPI select channel 7 (active low)

SS6 NA (generated internally) SPI select channel 6 (active low)

SCLK P11 (12) SPI clock

MISO P10 (11) SPI master in slave out (into Propeller)

MOSI P9 (10) SPI master out slave in (from Propeller)

PSCL P28 (35) Serial clock out of Propeller

PSDA P29 (36) Serial data in/out of Propeller

GND Ground System ground

 The SPI select signals labeled SS7 and SS6 are generated by the SPI bus hardware and are external to the
Propeller. They actually connect in the schematic to the output of the 74LVC138A decoder pins Y7, Y6 at pins 7,9
respectively of the 138A.

2.1.7 System / Power Header
The System/Power header is to the right of the Port B header along the right edge of the PCB. The
header consists of 8 signals that export out the PS/2 signal P27, P26, the USB serial TX, RX, power,
ground and system reset as shown in Table 2.4 below.

Table 2.4 — Signals top to bottom for System / Power header.

Signal Name Propeller IO (Pin) Description

PS2_DATA P26 (33) PS/2 serial data non-inverted

PS2_CLOCK P27(34) PS/2 serial clock non-inverted

TX (USB) P31 (38) USB TX out, Propeller RX in

RX (USB) P30 (37) USB RX in, Propeller TX out

GND Ground System ground

3.3V NA Power supply 3.3 V

5.0V NA Power supply 5.0 V

RES RESn (7) System reset (Active low)

In the next sections, we will cover each sub-system in detail with a close up schematic and discussion of
the circuit operation and any software considerations.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 18 of 95

2.2 Power Management
The power for the Propeller C3 is sourced either by an external 9—12 VDC wall adapter with a 2.1 mm
ID, 5.5 mm OD, center positive port or pulled from the USB port. The C3 can be powered from either but
not both. Additionally, the C3 can draw a lot of current with all IO devices inserted and even more when
driving servos or large current devices. Thus, if you do wish to power the C3 by a USB cable, then make
sure that the USB port is high power and can supply 500 mA of current. If you try to draw too much
current from a USB port then the port will disable or shut down and a hardware reset is usually required.
Additionally, try not to connect highly inductive loads to the C3 when USB powered, and don’t connect
both external power and USB power at the same time. That said, you can easily power your C3 from a
laptop as long as you aren’t driving high-current devices from it. Now, let’s take a look at the power
supply schematic as shown in Figure 2.3 below. Also, you can find a high-resolution copy of schematic on
the FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_power.png

Figure 2.3 — The power management circuitry for the Propeller C3

! The Propeller C3 Is designed to accept power from the USB port or from an external power supply. Do not
simultaneously supply power from more than one source. Before supplying external power be sure to
remove the USB cable, otherwise damage to the C3 and your computer may occur.

Referring to Figure 2.3, power is either fee from the USB 5 V supply or the external port at J1 through a
Schottky protection diode D1 into the 5 V regulator U1. The output of U1 and the 5 V supply from the
USB connector are both directly connected to the input of the 3.3 V regulator U2. Both regulators are
high current LDOs (Low Drop Out) from ST-Micro LD29150 series. You can find a data sheet for them on
the FTP site here:

PropC3 \ Docs \ Datasheets \ ST29150.pdf

Finally, power on is indicated by LED D2 with current limiter resistor R1.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 19 of 95

2.3 Propeller Processor System
The Propeller chip on the C3 is a standard QFP44 pin package oriented with pin 1 to the bottom right of
PCB. The processor system on the C3 includes the standard requirements such as an EEPROM for
program storage (64 KB in this case), reset circuit, crystal, and bypass capacitors for power smoothing.
Some special design elements on the C3 are extra large SMT pads for the C3 to increase heat dissipation
and keep the Propeller cool for over clocking. Additionally, the Propeller has a rather large 22 µF bypass
capacitor along with a 0.1 µF capacitor in parallel to reduce noise as well as well as supply large currents
on demand, so the chip doesn’t brown out. Let’s take a look at the schematic shown below in Figure 2.4.
Also, there is a high resolution copy of the schematic on the FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_prop.png

Figure 2.4 — The Propeller C3’s processing hardware

Referring to Figure 2.4, the Propeller is labeled U3, the reset logic at switch SW2 allows simple push-
button reset. The crystal is socketed at X1, so you can remove and replace it with a 10 MHz, or the new
popular 6.25 MHz for over clocking experiments. At U4 we see the boot EEPROM which is a Microchip
24FC512-I/ST 64 KB byte I2C EEPROM. Of course, the Propeller only requires a 32 KB boot EEPROM, but
having more space allows other assets to be stored in the EEPROM. You can find the data sheet for the
EEPROM on the FTP site here:

PropC3 \ Docs \ Datasheets \ 24FC512.pdf

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 20 of 95

Now, let’s take a look at all the signals coming from the Propeller chip. All of the standard IO signals are
exported out of the chip on the schematic with their Propeller IO names, then a number of specialized
aliases are made on the schematic to make the design easier to keep track of what’s what.

On the left of Figure 2.4, you can see the SPI signals, as well as the video signals. Notice that instead of
the usual 4 video signals, we have omitted the aural signal (since it’s rarely used) and used this signal to
control the status LED as well as the VGA buffer (STATUS_LED_BUS_MUX). Moving to the right of the
figure, we see the VGA signals, as well as the I2C, USB TX/RX, PS2, and finally a single audio signal, and
the SPI_SEL_CLR signal. Table 2.5 below lists all the signals by class and gives a detailed description of
each.

Table 2.5 — Propeller chip primary signals.

Signal Name Propeller IO(Pin) Description | Notes

SPI Propeller is master.

 SPI_SEL_CLK P25 (32)
Used as the clock input into the SPI chip
select logic to cause the 4-bit counter to
count up.

SPI_MOSI(1) P9 (10) SPI master out slave in.

SPI_MISO(1) P10 (11) SPI master in slave out.

SPI_SCK(1) P11 (12) SPI clock.

SPI_SEL_CLR P8 (9)
Used to clear the 4-bit counter in the SPI chip
select logic.

Composite Video Standard Propeller video DAC signals.

VIDEO_0 P12 (13) Bit 0 of video signal.

VIDEO_1 P13 (14) Bit 1 of video signal.

VIDEO_2 P14 (15) Bit 2 of video signal.

VGA
Standard Propeller VGA DAC signals.
VGA also shared with Port B header.

VGA_VSYNC P16 (19) TTL level vertical sync pulse.

VGA_HSYNC P17 (20) TTL level horizontal sync pulse.

VGA_BLUE_B0 P18 (21) Analog Blue signal bit 0.

VGA_BLUE_B1 P19 (22) Analog Blue signal bit 1.

VGA_GREEN_B0 P20 (23) Analog Green signal bit 0.

VGA_GREEN_B1 P21 (24) Analog Green signal bit 0.

VGA_RED_B0 P22 (25) Analog Red signal bit 0.

VGA_RED_B1 P23 (26) Analog Red signal bit 0.

LED Status / VGA Mux
Used for both a status LED toggle and to
enable/disable the VGA buffer.

STATUS_LED_BUS_MUX P15 (16)
Active low signal enables the VGA buffer and
connects the VGA signals P23..P16 to the
VGA header. Also, low lights the status LED.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 21 of 95

I2C

Propeller is I2C master normally during
boot, but if pins are placed into input
mode then an external device can actually
communicate to the on-board I2C as
master.

PROP_SCL(2) P28 (35) I2C clock w / 4.7 kΩ pull-up to 3.3 V.

PROP_SDA(2) P29 (36) I2C data w / 4.7 kΩ pull-up to 3.3 V.

Serial/USB Serial

USB_RXD P30 (37) Receiver to USB UART from TX of Propeller.

USB_TXD P31 (38)
Transmitter from USB UART into RX of
Propeller.

Audio
Assumed that this will be driven with a
PWM signal of some kind.

AUDIO_MONO P24 (31)
Mono audio PWM signal with integrator and
filter before RCA output.

Note 1 – The Propeller chip is the master in the Propeller C3 design and initiates all SPI traffic.

Note 2 – Standard electrical protocol for I2C specifies that I2C clock and data should be open collector, so either master or slave
can pull them to ground. Thus, the 4.7 kΩ pull-up resistor is used in case the Propeller stops acting as a slave and there are other
I2C masters on the external header. They will require the pull ups for proper operation.

2.4 SPI Bus System
The Propeller C3 is a highly optimized design in both design and size respects. One of the issues with any
microcontroller design is how to make best use of the IO resources while at the same time not drive
yourself into a brick wall or creating a messy design. After the initial design of the core Propeller C3
features such as composite video, VGA, serial, I2C, PS2, etc. there was hardly any IO left to access all the
new devices we wanted to add to the Propeller C3 such as FLASH, SD, SRAM, A/D, and external devices.

The first decision was to go with an SPI design (serial peripheral interface) rather than I2C. The reasoning
is that although SPI requires a separate clock, it’s MUCH faster and worth the extra signal line. Therefore,
we needed at least 3 lines for the base SPI bus interface MOSI, MISO, and SCLK. So far, so good, but I
only had 2 signals left on the board after this allocation! And SPI devices need a chip select line. I could
use the 2 remaining signals to feed a decoder, but that would give me only 4 chip select lines, I needed
at least 8 to be able to access all the onboard devices as well as give the user at least 2 exported chip
select lines (SPI_SS7, SPI_SS6) for connecting more devices.

The choice was pull a signal from something else, or multiplex the SPI bus with one of the signals on
P7..P0—which I just couldn’t bring myself to do. That nice 8-bit port had to be left alone. So, I thought
long and hard how to select any number of devices with only 2 lines and I came up with a very clean
concept; the use of a counter and a decoder.

One of the most interesting stories about IO usage occurred during the design of the Atari 2600 or VCS.
Back in the 1970’s the 6502 microprocessor reigned supreme (in fact there are millions still sold today). At $25 a
unit the 6502 was the basis for the Apple, Commodore 64, Atari computers, as well as the Atari 2600. The 2600
was based on a variant of the 6502, the 6507 which had only 13 address pins instead of 16, thus it could only
address a total of 213 = 8K. The designers decided to export only 12 of these address lines to the cartridge port,
and split the 8 KB address space into 4 KB for internal RAM, and 4 KB for external ROM games. This was one of
the largest mistakes in history. Very quickly, programmers used up the 4 KB cartridge memory and needed the
extra address line. Atari designers saved about 0.5 pennies not exporting that address line, but lost millions if not
tens of millions in more complex “bank switched” cartridges to overcome the oversight..

One signal would be used to clock a 4-bit counter (U11; 74LVC161A), the output of the counter would be
fed into a 3-8 bit decoder (U7; 74LVC138A) then as the count increased the decoder would enable one

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 22 of 95

of n outputs (active low). These outputs would then be directly connected to the active low chip select
line of each and every SPI device on the bus. Finally, to reset the counter, the other remaining IO line
feeds the active low reset of the counter (SPI_SEL_CLR) and this allows you to very quickly reset the SPI
select to device channel 0. If you are interested in learning more about the counter and decoder, their
datasheets can be found on the FTP site here:

PropC3 \ Docs \ Datasheets \ 74LV161.pdf
PropC3 \ Docs \ Datasheets \ 74LV138.pdf

So, you might be thinking, “Isn’t that slow to have to count up to the SPI channel each time?” The
answer is no. You can clock the counter at 100 MHz if you wish, so it’s nearly instantaneous. Moreover,
once a device is selected you tend to use it for a long time, thus the selection process doesn’t have effect
on speed.

With this design, we could actually address 16 devices on the SPI bus if we used a 4-16 decoder, but I
opted to use a 3-8 which allows all onboard devices to be accessed along with 2 more external devices
on the SPI/I2C header.

Of course, only a single SPI device can be accessed at once, since they share the same bus, but unless
we have n parallel buses there is no way around this. Let’s take a look at the schematic shown below in
Figure 2.5. Also, there is a high resolution copy of the schematic on the FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_spibus.png

Figure 2.5 — The SPU bus and multiplex logic.

The circuit is rather simple, the Propeller feeds the counter U11 (74LVC161A) with the clock and clear
signals at pins 1,2 respectively. Then the counter counts and its 4-bit output is on pins Q3..Q0 at pins
11...14. Only the lower 3 bits are used: Q2..Q0 labeled SPI_SEL2..SPI_SEL0 which are fed into the
decoder U7 (74LVC138A) at inputs A,B,C on pins 1,2,3 respectively. Thus, the counter as it counts from
0...7 causes the SPI select lines on the decoder Y0..Y7 to assert (active low). These signals are referred
to in the schematic as SPI_SS0n..SPI_SS7n. The “n” is just to remind us they are active low, and are
omitted in discussions from time to time. Therefore, to select any SPI device the algorithm is:

 Reset the counter by asserting SPI_SEL_CLR LOW then back high.
 Clock the counter n times by raising and lowering SPI_SEL_CLK.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 23 of 95

 At this point, the appropriate SPI select line will be asserted from the decoder, you are free to
access the SPI device on the bus.

Here’s an actual Spin version of the function that selects an SPI channel on the Propeller C3:

PUB SPI_Select_Channel(channel)
{{
This function sets the active SPI channel chip select on the SPI mux, this is
accomplished by first resetting the SPI counter that feeds the SPI select decoder,
then up counting the requested number of channels.

PARMS:

channel : channel 0 to 7 to enable where the channels are defined as follows
 0 - NULL channel, disables all on/off board devices.
 1 - 32K SRAM Bank 0.
 2 - 32K SRAM Bank 1.
 3 - 1MB FLASH Memory.
 4 - MCP3202 2-Channel 12-bit A/D.
 5 - Micro SD Card.
 6 - Header Interface SPI6.
 7 - Header Interface SPI7.

RETURNS: nothing.

}}

 ' requesting channel 0? If so, easy reset
 if (channel == 0)
 ' clear the 161
 OUTA[SPI_SEL_CLR] := 0 ' CLR counter
 OUTA[SPI_SEL_CLR] := 1 ' allow counting
 return

 ' else non-null channel, count up to channel...

 ' first reset the SPI channel counter
 ' clear the 161
 OUTA[SPI_SEL_CLR] := 0 ' CLR counter
 OUTA[SPI_SEL_CLR] := 1 ' allow counting

 ' now increment to requested channel
 ' clock the 161
 OUTA[SPI_SEL_CLK] := 0

 repeat channel
 OUTA[SPI_SEL_CLK] := 1
 OUTA[SPI_SEL_CLK] := 0

' end SPI_Select_Channel

As you can see, certain channel numbers have been assigned to the various SPI devices on the Propeller
C3; they are listed in the next section.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 24 of 95

2.4.1 SPI Channel Allocations

 0 — NULL channel, disables all on/off board devices.

 1 — 32 KB SRAM Bank 0

 2 — 32 KB SRAM Bank 1

 3 — 1MB FLASH Memory

 4 — MCP3202 2-Channel 12-bit A/D

 5 — MicroSD Card

 6 — Header Interface SPI6

 7 — Header Interface SPI7

In the second section of this manual on software and programming the C3 we will see more of the SPI
bus and related functions in their entirety; this is just to let you see how easy it is to use the SPI bus.
Next, let’s take a look at all the signals at a glance in Table 2.6 below.

Table 2.6 — SPI selection logic signals.

Signal Name Propeller IO(Pin) Description | Notes

SPI_SEL_CLK P25 (32)
Used as the clock input of the 4-bit counter U11 to
count up

SPI_MOSI P9 (10) SPI master out slave in

SPI_MISO P10 (11) SPI master in slave out

SPI_SCK P11 (12) SPI clock

SPI_SEL_CLR P8 (9) Used to clear the 4-bit counter U11

SPI_SEL2 NA (internal) Bit 2 of counter feed to C input of 3-8 decoder U7

SPI_SEL1 NA (internal) Bit 1 of counter feed to B input of 3-8 decoder U7

SPI_SEL0 NA (internal) Bit 0 of counter feed to A input of 3-8 decoder U7

SPI_SS0n NA (internal) NULL channel, selects nothing

SPI_SS1n NA (internal) Selects SRAM bank 0

SPI_SS2n NA (internal) Selects SRAM bank 1

SPI_SS3n NA (internal) Selects 1MB FLASH memory

SPI_SS4n NA (internal) Selects A/D converter

SPI_SS5n NA (internal) Selects microSD card

SPI_SS6n NA (internal) Off board external device select channel 6

SPI_SS7n NA (internal) Off board external device select channel 7

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 25 of 95

2.5 USB Serial Communications
The serial port on the C3 uses a standard FTDI USB to serial UART FT232R at U6. This is the same chip
used on the majority of Propeller based boards, and the stand-alone Parallax USB2SER and Prop Clip
devices use it as well. There is nothing special about the FTDI chip other than the C3 can be powered by
the 5 V input to the USB if there is no external power. The data sheet for the FTDI chip can be found on
the FTP site here:

PropC3 \ Docs \ Datasheets \ FTDI232R.pdf

Other than that, the C3 uses the standard AC-coupled, DTR-based reset circuit. The schematic for the
USB UART is shown below in Figure 2.6. There is a high resolution copy of the schematic on the FTP site
in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_usbserial.png

Figure 2.6 — The USB to serial UART circuit

The FTDI 232R at U6 is connected to the Mini-B USB port with bypass/filtering capacitors on the +5.0 V
supply. The FTDI chip is powered from the USB port itself and the IO is set to 3.3 V into the VCCIO pin
of U6. The only other signals from the UART are the TX/RX LED indicators connected to CBUS0/CBUS1
respectively. Finally, the UART TX line labeled USB_TX connects to the Propeller chip’s RX line at P31
and the UART RX line labeled USB_RX connects to the Propeller chip’s TX line at P30.

 The USB_TX, and USB_RX are exported out to the IO headers on the C3, so you can use the C3 as a pass-
through ad-hoc USB to serial TTL converter.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 26 of 95

Finally, there is the standard reset circuit based on the DTR output (Data Terminal Ready) of the FTDI
chip labeled USB_DTRn. If there is a transient pulse on the DTR line it will pass through the capacitor at
C16 and forward bias the transistor Q1. This will in-turn cause RESn to be pulled to ground
momentarily, resetting the Propeller chip. On the other hand, if the DTR signal is held high (latched up,
etc.) then the reset will occur; however, as C16 charges, the right side will end up at 0 V or thereabouts,
which will reverse-bias the transistor and the reset state will stop. Thus, this circuit is very safe and
allows you to reset the Propeller via the DTR line, but won’t lock up if the DTR is held accidentally.

If you want to create a PC-based serial application that controls DTR (or other signals) then you will need
an appropriate driver. The Windows SDK has a serial driver that allows full control of the serial port’s control
signals. And under Linux the same kind of drivers are available for the TTY drivers. Also, some serial terminal
programs allow you to control some of the serial handshaking lines as well. For example, the Parallax Serial
Terminal program GUI allows you to toggle DTR as well as RTS (Request to Send) and view the state of the TX,
RX, CTS (Clear to Send), and DSR (Data Set Ready) lines.

That’s about all there is to the serial communications on the C3. Table 2.7 below lists the signals at a
glance.

Table 2.7 — USB UART signals used in the Propeller C3 serial sub-system.

Signal Name Propeller IO(Pin) Description | Notes

USB_TX P31 (38) RX into the Propeller from PC

USB_RX P30 (37) TX from the Propeller to PC

CBUS0 NA TX indicator from USB UART

CBUS1 NA RX indicator from USB UART

USB_DTRn NA Controls system reset RESn on Propeller

2.6 Composite Video
The composite video circuit for the C3 is the standard 3 resistor voltage summer circuit that is utilized by
the numerous video drivers written for the Propeller chip. Programming a driver for the video hardware
requires assembly language. The video hardware is beyond the scope of this manual, but if you are
interested in learning more about writing video drivers for the Propeller chip then I suggest my book
Game Programming for the Propeller Powered HYDRA (available from Parallax). It has the largest
coverage of video programming on the Propeller chip.

With that in mind, let’s take a look at the video schematic. The schematic for the video summer circuit is
shown below in Figure 2.7 and there is a high-resolution copy of the schematic on the FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_video.png

Figure 2.7 — The composite video circuit for the Propeller C3

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 27 of 95

The video circuit functions as a current summer where the voltage on each of the inputs
VIDEO_0..VIDEO_2 generate currents into the receiver’s 75 termination impedance; this results in a
voltage swing of approximately 0 V (sync) to 1 V (bright white). The only thing you need to know about
the video circuit is that if you are going to port another driver from another author or write one yourself,
all you have to do is set the video pins correctly. The C3 uses P12..P15 for video, that is the upper
nibble of the second 8-bit port. Thus, when porting drivers make sure you set this correctly, and the
associated mask. Also, remember the C3 doesn’t use the aural sound signal on the last bit of the video
nibble, thus you need to disable any aural signal that would be sent on P15.

Other than that, it takes a whole 30 seconds to make the changes to any video driver that might use a
different 8-bit Propeller port and nibble. Table 2.8 below lists the signals and their associated Propeller IO
pins.

Table 2.8 — Composite video summer circuit signals.

Signal Name Propeller IO(Pin) Description | Notes

VIDEO_0 P12 (13) Bit 0 of video signal (LSB)

VIDEO_1 P13 (14) Bit 1 of video signal

VIDEO_2 P14 (15) Bit 2 of video signal (MSB)

2.7 VGA Video / IO Buffer
The VGA circuitry on the C3 is identical to the standard Propeller VGA design except that there is a
74LVC245A buffer U5 between the Propeller VGA signals and the VGA HD15 header. This is so we can
share the VGA pins P23..P16 with other applications via the C3 header Port B. The buffer allows us to
electrically remove the VGA HD15 connector (and the VGA cable connected to it potentially) from the IO
pins themselves and use them without worry that there are other signals or impedances on them from a
connected VGA monitor. Of course, this means you can only use either the VGA monitor or the IOs
P23..P16 on header Port B one at a time, but better than having to unplug a VGA monitor every time!

The buffer is can be tri-stated with the STATUS_LED_BUS_MUX signal connected to Propeller IO
signal P15 being asserted low. This also has the effect of lighting the “VGA Enable” LED next to the
buffer chip itself on the PCB.

So, if you want to use the VGA output of the Propeller/C3 make sure to assert P15 to low. If you want to
use the Port B header as standard IO, make sure to assert P15 to high. Aside from the buffer, the VGA
display works like other Propeller designs, the video unit in any cog generates a stream of bytes, each
byte represents RGB in 2:2:2 format and the sync signals. A series of 3 summing circuits sum the RGB
signals respectively and the sync signals are injected into HSYNC and VSYNC directly on the VGA monitor.
The schematic for the VGA video circuit is shown below in Figure 2.8 and there is a high resolution copy
of the schematic on the FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_vga.png

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 28 of 95

Figure 2.8 — The schematic of the buffer and VGA summing circuit

Referring to the circuit, the VGA signal comes in to the left of U5 and exits to the right into the VGA
header itself. The buffer is enabled via the chip enable signal CE (active low) at pin 19 which has
STATUS_LED_BUS_MUX (P15) connected to it. The buffer chip itself is a high speed LVTTL 74LVC245A
capable of signaling speeds in excess of those required to support a VGA signal that’s 1600 pixels across
(far in excess of what the Propeller can do). The data sheet for the 74LVC245A is located on the FTP site
here:

PropC3 \ Docs \ Datasheets \ 74LVC245A.pdf

The signals for the VGA port are shared with Port B and listed once again in Table 2.9 below.

Table 2.9 — The VGA circuit signals

Signal Name Propeller IO(Pin) Description | Notes

VGA_RED_B1 P23 (26) VGA Red Bit 1

VGA_RED_B0 P22 (25) VGA Red Bit 0

VGA_GREEN_B1 P21 (24) VGA Green Bit 1

VGA_GREEN_B0 P20 (23) VGA Green Bit 0

VGA_BLUE_B1 P19 (22) VGA Blue Bit 1

VGA_BLUE_B0 P18 (21) VGA Blue Bit 0

VGA_HSYNC P17 (20) VGA HSync

VGA_VSYNC P16 (19) VGA VSync

STATUS_LED_BUS_MUX P15 (16) VGA buffer enable (active low).

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 29 of 95

2.8 Audio System
The Propeller chip has no dedicated sound hardware, so once again most designs either use some form
of software generated sound or external sound hardware. The C3 uses the former concept and a single
pin to generate sound using a PWM (pulse width modulated) analog signal to generate the signal. The
concept of PWM is very powerful and if you haven’t heard of it, or have, but don’t understand it, it’s
worth your time to check it out. In brief, a single digital pin is toggled at a specific rate. The toggling of
each cycle has a certain percentage of the signal high and a certain percentage low. The term for this
high/low relationship is called duty cycle.

So, imagine if you had an analog integrator that could average the signal over time. If we toggle a 3.3 V
signal with a duty cycle of 50%, then it stands to reason the output would be 3.3 V / 2 = 1.65 V. This is
the general idea. We toggle a signal very fast with software/hardware and control the duty cycle.
Therefore, we end up with a 1-bit D/A convertor that we can connect to a speaker and—presto—we have
sound. The idea is that the PWM should be 10–100x faster than the signal you want to synthesize and
the output of the PWM is voltage only, there is very little current. So, if you want to drive a speaker you
need to add an op-amp or buffer to get some drive current.

The theory of PWM sound generation is rather complex, but you can find excellent resources on the web,
and/or by studying some of the Propeller sound drivers themselves. Also, there is a very long and
illustrative chapter on PWM sound generation in my book Game Programming for the Propeller
Powered HYDRA, available from Parallax. With that in mind, let’s take a look at the schematic for the
sound circuit shown in Figure 2.9 below. As usual, there is a high resolution copy of the schematic on the
FTP site in:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_audio.png

Figure 2.9 — Propeller C3 audio generation circuit

The circuit is driven by a single Propeller port P24 (31) connected to the system schematic signal
AUDIO_MONO. A PWM signal drives the circuit which consists of a low-pass integrator filter made of R8
and C15. These components will integrate the PWM signal into a smooth DC voltage with the high
frequency PWM riding on top of it. This is then removed by the second low-pass filter made of C14 and
the impedance of the audio connection itself which is around 75 if connected to an amplifier or TV set.
The 22 µF capacitor starts kicking in at a few kHz, so it filters the high frequency PWM noise nicely, but
allows very low (bass) to mid range audio signals to get through nicely with that 22 µF capacitor.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 30 of 95

2.9 PS/2 Keyboard/Mouse Port
The PS/2 port on the Propeller C3 uses a standard DIN 6 socket. PS/2 protocol is based on a serial data
packet that is clocked at a specific rate. Thus, whenever there is a key press or mouse movement
(depending on what you have plugged in) a data packet(s) is sent. Usually, 11-bit packets consist of a
start bit, 8 data bits, stop bit, and parity. Electrically, the PS/2 port requires +5 V, a clock line with a pull
up, and a data line with a pull up. Then the majority of work is in the keyboard/mouse drivers. The
schematic for the Propeller C3 PS/2 port is shown below in Figure 2.10. A high resolution copy of the
circuit is located on the FTP site here:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_ps2.png

Figure 2.10 — PS/2 circuit on the Propeller C3.

The PS/2 interface is rather straightforward. PS2_DATA and PS2_CLOCK are connected to IO pins
(P26, P27) on the Propeller and used for and data and clock respectively. The Propeller acts as the
master controlling the clock signal while the keyboard toggles the data line when sending to the
Propeller. Of course, the Propeller can send packets to the keyboard or mouse as well. This is why it’s
important that the circuits are open collector and why the pull ups R6 and R7 are required. The PS/2
spec states that the keyboard and mouse only has to pull the data and clock line to ground, not to drive
it high; it should be pulled up.

Finally, R27 and R28 are current limiters to protect the Propeller from the +5 TTL signaling coming from
the keyboard or mouse. Luckily, CMOS 3.3 V can drive 5 V TTL, and 5 V TTL can drive 3.3 V CMOS with a
current limiter, so all is well. There are a number of PS/2 device drivers for mice, keyboards, and other
PS/2 devices (since they are serial in nature). But, if you want to write your own driver there are
numerous articles and white papers on the internet and there is a whole chapter on writing mouse and
keyboard drivers in my book Game Programming for the Propeller Powered HYDRA which is
available from Parallax. That’s about all there is to the PS/2 circuit, Table 2.10 below lists the signals at a
glance.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 31 of 95

Table 2.10 — The PS/2 keyboard/mouse interface circuit signals.

Signal Name Propeller IO(Pin) Description | Notes

PS2_DATA P26 (33) PS/2 serial data non-inverted.

PS2_CLOCK P27(34) PS/2 serial clock non-inverted.

2.10 FLASH Memory System
The FLASH memory on the Propeller C3 is comprised of a single 8 Megabit/1MByte SPI FLASH chip from
Atmel part AT26DF081A. The chip can signal in excess of 25 MHz, so its plenty fast to use as a large
storage area for assets, code, data, images, whatever. Moreover, FLASH memories are very easy to read
and write from since they are sector based and have small state machines inside them to make life easy
on you. Additionally, there are many read/write modes that help you optimize access to the FLASH
memory. Later in the software section, we will see a demo of how to read and write to the FLASH
memory, but you will need to read the data sheet at some point. You can find it on the FTP site here:

PropC3 \ Docs \ Datasheets \ AT26DF081A.pdf

Now, at some point the C3 might use another FLASH memory. The good news is that 95% of FLASH
memories have the same instruction set and features. But, there are differences between parts even
though they are supposed to be JEDEC standardized. Thus, if a C3 is shipped with a variation on the
FLASH memory that breaks some of the driver or demo code, we will let you know and provide updated
drivers. That said, for the most part if you have programmed one FLASH memory, you have programmed
them all. Read the data sheet carefully; if you want to utilize the FLASH memory to its fullest on the C3,
but in short, you power it up, unprotect it, then start reading or writing single bytes in sequential access
mode. It’s that simple.

The schematic for the FLASH memory circuit is nothing more than the FLASH memory itself as shown in
Figure 2.11 below. Also, there is a high resolution copy of the schematic located in the FTP site here:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_flash.png

Figure 2.11 — FLASH memory circuit on Propeller C3.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 32 of 95

The FLASH chip is labeled U8 and is connected to the system SPI bus signals (SPI_MOSI, SPI_MISO, and
SPI_SCK) which are common to all SPI devices on the bus. Then the chip select signal for the FLASH
memory is connected to pin 1 (CSn) which in this case is SPI_SS3n coming from the SPI bus logic.
Thus, the FLASH is channel 3 on the SPI bus. Therefore, if you want to access the FLASH memory on the
SPI bus, you reset the SPI counter, then clock it to channel 3, and the chip select for the FLASH memory
will assert and you are free to communicate with the FLASH memory. Also, note that HOLDn and WP
(write protect) are tied high. Table 2.11 below lists the signals at a glance for the FLASH memory.

Table 2.11 — FLASH SPI signals.

 Signal Name Propeller IO(Pin) Description | Notes

 SPI_MOSI P9 (10) SPI master out slave in

 SPI_MISO P10 (11) SPI master in slave out

 SPI_SCK P11 (12) SPI clock

 SPI_SS3n NA (internal) Selects 1MB FLASH memory

2.11 32K x 2 SRAM Design
The SRAMS on the Propeller C3 are one of the most interesting design aspects. As discussed in the
overview about the design on the C3, in a perfect world, we would like to have parallel static SRAMs
connected to the Propeller. However, with the large number of peripherals the C3 is incorporates, there
simply isn’t enough IO to go around and support a parallel SRAM system without a lot of expense.
Therefore, a compromise was to use new SPI based serial SRAMs. These are VERY fast, 25 MHz and
greater and since we are dealing with microcontroller speeds here on the order of 10-20 MIPS for the
Propeller on average for 1-2 clocks per instruction, 25 MHz is more than enough to feed even the most
demanding applications.

For example, if you assume you have to clock in a byte with 8 bits, plus 2 bits of overhead, you get a 2.5
MHz memory bandwidth. Even if you cut that in half to be safe, that’s 1.25 Mbytes/sec. And that’s not too
shabby! Considering old 8-bit PCs had about 1/2 to 1/10th that bandwidth, they did just fine. In my
searches, I found that Microchip is the leader in serial SPI SRAMs and have the largest one available:
32 K bytes. This is huge for a serial SRAM. So, I decided to put a pair of them on the C3 for a total of
64 KB. You can access each one on the SPI bus, as if they were any other SPI device. The data sheet for
the device is located on the FTP site here:

PropC3 \ Docs \ Datasheets \ 23K256.pdf

The schematic for the SRAM memory circuit is nothing more than a pair of SPI SRAMs as shown in Figure
2.12 below. Also, there is a high resolution copy of the schematic located in the FTP site here:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_sram.png

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 33 of 95

Figure 2.12 — Dual 32 KB SRAM memory circuit on Propeller C3.

The SPI SRAMs U9 and U10 are connected to the system SPI bus signals (SPI_MOSI, SPI_MISO,
SPI_SCK). The chip selects for the SPI SRAMs use SPI_SS1n (channel 1) and SPI_SS2n (channel 2) for
bank 0 (U9) and bank 1 (U10) respectively. To access either SRAM, simply assert channel 1 or 2 and then
the SRAM is yours to command. Interestingly, they are very similar to the FLASH memory, expect that
there is no erasing necessary and it’s not sector based like the FLASH. The SRAMs are completely
random access for both reading and writing. Also, one note about optimization… I decided to place the
SRAMs at SPI channel 1,2 since in most cases accessing SRAM is more frequent that FLASH or ROM
memories, thus after an SPI reset, all you need to do is clock the SPI counter a single time, and you are
accessing SRAM bank 0. That wraps it up for the SRAMs. Table 2.12 below lists the signals at a glance for
the SRAM circuit.

SRAM on power-up — When the SRAMs power up they will have random data in them, so be sure to clear them
out and don’t assume they have 0’s in them at boot. Also, the SRAMs have small 0.1 µF bypass/filter capacitors on
them (C25, C26) and due to their extremely low power consumption they will actually hold state for a few seconds
being powered by the small capacitor! This is a cool feature if there is a momentary power glitch, but regardless,
you should always clear any SRAM variables or storage before using them.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 34 of 95

Table 2.12 — SRAM SPI signals.

Signal Name Propeller IO(Pin) Description | Notes

SPI_MOSI P9 (10) SPI master out slave in

SPI_MISO P10 (11) SPI master in slave out

SPI_SCK P11 (12) SPI clock

SPI_SS1n NA (internal) Selects SRAM bank 0

SPI_SS2n NA (internal) Selects SRAM bank 1

2.12 A/D System
Once I had the SPI bus system in place on the Propeller C3, it was tempting to add all kinds of devices to
the bus (and it still is!). However, we wanted to keep cost down, so I made a list of what people really
use and A/D and D/A came up over and over. Since, A/D is obviously the most complex process, that’s
what I decided to add. Now, if you’re a Propeller programmer, you know that there are software A/D
drivers, but they are slow, plus they use up one or more processors for the conversion. What we needed
was a real A/D with 1-2 channels and 10-12 bits of resolution that had an SPI interface. After searching a
while I came upon the MCP3202 from Microchip, I have used this device and its relatives many times and
found it to be very reliable, fast, low cost, and easy to program. Additionally, I searched Parallax’s
website and forums and found that many customers have used the MCP3202 and there are even
Propeller drivers for it, thus, the decision was easy to make for the MCP3202. It’s a dual channel 12-bit,
successive approximation A/D that supports either 2 ground referenced analog inputs or a single
differential channel with a conversion rate of 100 K samples per second (at +5.0 V reference). The data
sheet for the MCP3202 device is located on the FTP site here:

PropC3 \ Docs \ Datasheets \ MCP3202.pdf

The schematic for the A/D circuit includes both the header itself as well as the MCP3202 as shown in
Figure 2.12 below. Also, there is a high resolution copy of the schematic located in the FTP site here:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_ad.png

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 35 of 95

Figure 2.13 — MCP3202 Analog to Digital converter circuit on the Propeller C3.

Let’s start with the header itself J13; this is where you will inject your analog signals for sampling. First,
you will notice that there are two bypass capacitors C29 (22 µF) and C30 (0.1 µF). The larger capacitor
C29 is for power smoothing, and the small capacitor C30 is for high-frequency noise filtering. Both are
needed to keep the power from the header as clean as possible, since you may be using the +5.0 V from
the header to power your analog device generating the signals for sampling. If you don’t use the power
from the header then you at least need to connect the ground pin at Pin 1 of the header (bottom) to your
signal references ground. Also, the MCP3202 uses +5.0 V as its reference voltage; therefore, any signals
you inject for sampling can range from 0..5 V. If you need a smaller range that’s ok, you aren’t going to
hurt the chip, but if you need a larger range then I suggest a voltage divider or scaler.

Moving onto the MCP3202 itself, once again, it’s very simple since it’s an SPI device. As usual, the SPI
bus is connected to the device with signals (SPI_MOSI, SPI_MISO, SPI_SCK) and this time the SPI
channel used by the A/D converter is SPI_SS4n (channel 4). To access the MCP3202, simply advance
the SPI selection logic to channel 4 and start sending commands to the A/D. Table 2.13 below lists the
signals for the MCP3202 and SPI interface.

The MCP3202 data sheet shows the input model of each channel. Each is composed of a number of
components and a capacitor to sample the signal. One thing that is important is that the output impedance of your
source is low enough that the MCP3202 can sample it. Therefore, read the data sheet on this topic, but as long as
you have impedances in the 1 kΩ–100 kΩ range it should be fine. For example, if you hook a potentiometer across
+5 and ground, with the wiper as the signal source, 1,10..100 kΩ will work fine, if you use a 1 MΩ potentiometer
you will start to notice more noise and less accuracy.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 36 of 95

Table 2.13 — MCP3202 Analog to Digital converter SPI signals

 Signal Name Propeller IO(Pin) Description | Notes

SPI_MOSI P9 (10) SPI master out slave in

SPI_MISO P10 (11) SPI master in slave out

SPI_SCK P11 (12) SPI clock

SPI_SS4n NA (internal) Selects A/D converter

J13 Analog Input Port

AN0 NA (J13 pin 4) Analog input 0 (0..5 V)

AN1 NA (J13 pin 3) Analog input 1 (0..5 V)

+5V NA (J13 pin 2) Power from C3

GND NA (J13 pin 1) Ground from C3 directly to A/D

2.13 Secure Digital (SD) Card Interface
The last SPI device accessible on the Propeller C3 is of course the SD card itself. In reality, SD cards are
not primarily SPI devices. The SPI mode of operation was a fallback or slow mode designed in when IO
was at a premium. SD cards have a much faster parallel mode that utilizes a 4-bit bus. However, this
parallel mode requires a license payment each year, thus only large companies use it. The SPI mode is
free to use and still supports the full functionality of the SD card protocol. With that said, SD cards are
very complex devices and similar to IDE disk drives in many ways at least as far as their complexity goes.
If you are interested in learning how to write a driver there are numerous documents online including the
SD specification itself. You can find copies of the documents on the FTP site here:

PropC3 \ Docs \ SD \ *.*

There is documentation for SD specification, FAT, and others; I suggest reading them all if you want to
write your own driver. And speaking of drivers for SD cards and the Propeller chip, there aren’t a lot of
them (due to their complexity); however, I have written one for you to get started (which you will learn
about in the software section). Also, I wrote a very detailed document on SD card driver development for
an SD card add-on for the HYDRA game console. The document is of course specific to the HYDRA SD
Max product and refers to it, but the theoretical section on SD cards, FAT, and writing drivers is the most
complete you will find. I know since I looked for months! And that’s why I had to write it myself. The
document and any other ancillary information can be found here on the FTP site:

PropC3 \ Docs \ HYDRASDMAX \ *.*

With that in mind, let’s look at the schematics for the SD card interface (which is nothing more than a
mechanical interface actually, there are no electronics, it’s all in the SD card itself). Figure 2.14 below
shows the SD card interface. Also, there is a high resolution copy of the schematic located in the FTP site
here:

PropC3 \ Designs \ Schematics \ prop_c3_rev_a_sd.png

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 37 of 95

Figure 2.14 — The SD card interface schematic.

As you can see, there isn’t much to the SD card header electrically. It uses the SPI bus as usual and, the
SD card allocates channel 5 for its SPI select. The one thing that is important is the use of the large
22 µF capacitor on the device. SD cards tend to draw a lot of current when they mount/boot, the 22 µF
capacitor helps stabilize the power. I have seen designs that had trouble mounting SD cards due to 100’s
of milliamps being pulled momentarily that the designer didn’t account for. This in turn causes a drop in
the power supply voltage and browns out the SD card. So, it’s always good to put a nice 22–33 µF
capacitor on your SD cards in addition to a 0.1 µF bypass capacitor. Table 2.14 below lists the signals
that the SD card interface uses.

Table 2.14 — SD card SPI signals.

 Signal Name Propeller IO(Pin) Description | Notes

SPI_MOSI P9 (10) SPI master out slave in

SPI_MISO P10 (11) SPI master in slave out

SPI_SCK P11 (12) SPI clock

SPI_SS5n NA (internal) Selects microSD card

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 38 of 95

2.14 Adding SPI Devices to the Propeller C3
The Propeller C3 has two extra SPI select channels 6,7 exported out to the SPI / I2C header along with
(SPI_MOSI, SPI_MISO, SPI_SCK). Table 2.15 below lists the header signals for reference.

Table 2.15 — Signals top to bottom for SPI / I2C Header.

Signal Name Propeller IO (Pin) Description

SS7 NA (generated internally) SPI select channel 7 (active low)

SS6 NA (generated internally) SPI select channel 6 (active low)

SCLK P11 (12) SPI clock

MISO P10 (11) SPI master in slave out (into Propeller)

MOSI P9 (10) SPI master out slave in (from Propeller)

PSCL P28 (35) Serial I2C clock out of Propeller

PSDA P29 (36) Serial I2C data in/out of Propeller

GND Ground System ground

Adding another SPI device is as easy as connecting the header bus signals labeled MOSI, MISO, SCLK to
your SPI device, along with power (3.3 V, GND) and finally the SPI select signal SS6 or SS7. Be careful
that you put proper bypass capacitors on your SPI device and it’s a 3.3 V device. If it’s a 5 V device, you
can still use it, but you will have to put a voltage translator on it or voltage divider at least on the MISO
signal to make sure it doesn’t damage the Propeller chip.

 SPI Signal Output — The SPI signals to the header itself actually have 100 Ω resistors inline to help protect from
over current/voltage, but they will require a 3.9 kΩ or higher resistor in series to be 5 V TTL compatible, but a better
idea is to reduce any input voltage to the Propeller to 3.3 V at max.

3 Demos and API
The Propeller C3 is like any other Propeller platform in respect to NTSC, PAL, VGA, PS/2, serial
communications, sound, etc. Any driver written for a Propeller chip that utilizes the standard design
patterns on the currently manufactured Propeller development boards work on the C3 with little or no
change other than an IO pin assignment. Nonetheless, putting together a quick NTSC demo or PS/2
keyboard test takes only a few lines of code or a page or two at most (of course, writing about each
takes hours!) That said, to be complete the following demos show off all the systems of the Propeller C3
for those readers who are new to the Propeller chip.

3.1 What to Expect
Each demo/test is rather simple and the bare minimum to get you going. Many of them rely on pre-
written drivers from the Parallax Object Exchange, myself, or others. However, the SRAM, FLASH,
A/D, and SD card demos I wrote specifically in Spin from the ground up and made them very easy to
understand with generous comments. So, if you are interested in using the SRAM for example, all you
need to do is read the data sheet, then try out the demo, read the source, copy the functions you are
interested in and that’s that. Additionally, if I developed an API for the device in question (even if it’s 2-3
functions), I will discuss the API in the section and list the important functions for you at a glance.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 39 of 95

Initially, I thought to turn everything into driver objects… but decided that I don’t want to try to anticipate what
everyone wants, and better to just show a simple example and let the user (you) take what you want. The only
demo that relies on more complex software and an actual driver (still in Spin) is the SD card demo. This is a
complex beast no matter how you slice it!

Also, there seems to be a lot of interest currently in communicating with Propeller boards over a serial
link using the Parallax Serial Terminal which you can download from this link:

http://www.parallax.com/Portals/0/Downloads/sw/propeller/Parallax-Serial-Terminal.exe

Therefore, for key demos, I ported them to use serial communications in addition to the “local” PS/2
keyboard versions—which brings me to the requirements of all the demos. You will need the following to
try all of them out:

 Windows PC with the Propeller Tool and a USB A to Mini-B cable

 VGA monitor for the VGA demo

 NTSC TV / Monitor for most demos, since I used an NTSC video driver for video

 PS/2 keyboard for most demos since I use it as an input device for menus

 PS/2 mouse for mouse demo

 Parallax Standard servo or compatible part #900-00005 (for servo demo)

 Parallax NES Gamepad Controller Adapter board Part #32368 along with an NES controller

 MicroSD card formatted FAT16 with some text files on it

Of course, many of these devices are optional and only needed if you want to play with the associated
feature. For example; NES controllers to try the NES demo, servos to try the servo demo, etc.

3.2 System Setup for the Tests and Demos
Each demo will have specific requirements, but let’s get the C3 set up and everything ready. Here’s a list
of bare minimum things to setup:

 First, we are obviously going to use the Propeller Tool, so launch that and hook your USB cable

to the C3.

 Most of the demos require an NTSC display (audio is nice too), so hook up an NTSC TV.

 All of the “local” demos require a PS/2 keyboard.

 The VGA monitor is only required for the VGA demo.

 All the software for the demos can be found on the FTP site here:

 PropC3 \ Sources \ *.*

At this point, you need to copy the Sources\ directory and all sub-directories to your hard drive, so the
demos hereafter can find all the files properly. In fact, I suggest you simply drag the entire contents of
PropC3\ to your hard drive.

I will assume you know your way around the Propeller Tool, if not, read the online documentation or
review the Quick-Start Guide in this manual. Each demo will follow the same pattern more or less:
overview, load the software, set up the C3, try the demo out, brief discussion and review any API used in
the demo. Without further ado, let’s get started!

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 40 of 95

3.3 Local Version Demos (PS/2 + NTSC Monitor)
This section contains the “local” version test demos. By “local” version, we mean that the C3 is
controlled by a local PS/2 keyboard plugged into the C3, so you type commands into it and see the
results on the NTSC monitor, or the movement of a servo or the specific IO device being tested. The
point is you need an NTSC TV hooked up to the A/V port of the C3 along with a PS/2 keyboard.

3.3.1 Keyboard & Mouse Demo
The keyboard/mouse demo uses standard Parallax PS/2 keyboard and mouse drivers to communicate
with the C3 PS/2 port. The top level file for the demo is named c3_keymouse_demo_010.spin and
you can find it on the FTP site here:

PropC3 \ Sources \ c3_keymouse_demo_010.spin

The demo includes a number of other objects for video, keyboard, mouse, etc. so make sure you drag
the entire Sources\ directory to your hard drive, so the Propeller Tool can find them. The demo allows
you to plug in either a keyboard or a mouse and try them out. Figure 3.1 below shows screen shots of
the demo in action.

Figure 3.1 — The Keyboard/Mouse demo in action.

(a) The main menu. (b) The keyboard demo in action. (c) The mouse demo in action.

Referring to Figure 3.1 (a), (b), (c) from left to right, we see a simple menu that allows you to select
keyboard or mouse. Now, ironically, you must have the keyboard plugged in to select which menu option
you want to try; keyboard or mouse! But, once you select mouse, you will be instructed to insert the
mouse and the software will begin the demo once it detects a mouse has been inserted.

The demo relies on the following objects as shown in the code fragment below:

OBJ

' current drivers used in this version of SPI interface
kbd : "keyboard_010.spin" ' instantiate keyboard driver
mouse : "mouse_010.spin" ' instantiate mouse driver
gfx_ntsc : "C3_GFX_DRV_010.spin" ' instantiate new NTSC tile driver

The keyboard and mouse drivers are standard Parallax objects that are system agnostic. The GFX_NTSC
driver is a tile engine I developed that has 32x25 lines of text with color control, scrolling, and other
features for games and graphics. It’s used as a stock driver in many of the demos, so we can see
something on the NTSC screen. It could be easily replaced by any of 100 graphics drivers for the
Propeller, but I like it since its small, fast, low memory imprint and I wrote a complete terminal emulator
in it as well, so it is very easy to “printf” to it and do console based applications in color.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 41 of 95

In any event, if you’re interested in the graphics driver, just read the source for it; the documentation is
built into the source code. Moving on, reading the keyboard and mouse on the C3 is very simple, all you
need is the IO port pins, and then you call the Parallax driver(s) as shown below for the keyboard
(mouse is similar):

 'start keyboard on c3, keyboard is always started even if its not plugged in
 ' we need it to read the user selection :)
 kbd.start(PS2_DATA, PS2_CLK)

The keyboard and mouse drivers both have a lot of functionality, so I suggest reading the source code if
you are interested in seeing their complete API. Here’s the mouse demo fragment from the program for
reference:

PUB Mouse_Demo

 '///
 ' Mouse TEST SUITE ///
 '///
 {{
 This test simply echos the keyboard to the NTSC screen. Make sure PS/2 keyboard
 is plugged into C3 and C3 is plugged into NTSC.
 }}
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("C3 Mouse Test."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("- Prints x,y coords to screen."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("- Plug in PS/2 Mouse..."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("- Press either button to exit."))
 gfx_ntsc.Newline_Term

 'start mouse on c3 pins
 mouse.start(PS2_DATA, PS2_CLK)

 ' wait for mouse to be inserted

 repeat while (g_temp1 := mouse.present) == 0

 '' 3 = five-button scrollwheel mouse
 '' 2 = three-button scrollwheel mouse
 '' 1 = two-button or three-button mouse
 '' 0 = no mouse connected

 gfx_ntsc.Dec_Term(lookup (g_temp1: 2,3,5))
 gfx_ntsc.String_Term(string (" button mouse detected."))
 gfx_ntsc.Newline_Term

 ' delay a moment
 Delay_US(1*1_000_000)

 ' print mouse relative deltas to screen
 repeat

 ' test for mouse button clock
 if (mouse.buttons > 0)
 ' unload mouse driver
 mouse.stop
 return

 ' print x,y deltas to screen
 gfx_ntsc.String_Term(string ("Mouse(x,y) = ("))

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 42 of 95

 gfx_ntsc.Dec_Term(mouse.abs_x)
 gfx_ntsc.String_Term(string (","))
 gfx_ntsc.Dec_Term(mouse.abs_y)
 gfx_ntsc.String_Term(string (")"))
 gfx_ntsc.Newline_Term

' end Mouse_Demo

The function starts by installing the mouse driver, waiting for the mouse to be installed and then begining
the demo that prints out the mouse position and button state to the screen with the graphics driver’s
terminal functionality.

3.3.2 VGA Demo
The VGA demo uses a standard Parallax VGA terminal driver VGA_Text_010.spin to print to the VGA
screen “Hello world from the Prop C3!!!”. The C3 uses the same VGA IO pins as the Propeller Demo
board and HYDRA (P23..P16), so there are no changes required to the driver. Otherwise, you would
have to go into the code and find the pin group and change it to the C3’s VGA pin group P23..P16.
Other than that, all you need is a VGA monitor plugged into the C3’s VGA port.

The top level file for the demo is named c3_vga_demo_010.spin and you can find it on the FTP site
here:

PropC3 \ Sources \ c3_vga_demo_010.spin

The demo doesn’t do much other than print “Hello world from the Prop C3!!!” to the VGA screen. Figure
3.2 below shows screen shots of the demo in action.

Figure 3.2 — Screen shot of VGA demo running.

The code for the demo is ridiculously simple; below is a fragment with the OBJ and main PUB sections
including the main function, so we can discuss it briefly (highlighted code in white):

'//
'OBJS SECTION ///
'//

OBJ

' current drivers used in this version of SPI interface
term_vga : "VGA_Text_010.spin" ' instantiate VGA terminal driver

'//
' MAIN ENTRY POINT TO DEMO///
'//

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 43 of 95

PUB Main : status

 ' let the system initialize
 Delay_US(1*1_000_000)

 ' initialize the vga driver
 ' take note of the control bits for this particular driver - %10111
 term_vga.start(%10111)

 ' delay a moment
 Delay_US(1*1_000_000)

 ' ///
 ' INITIALIZE I/O PINS ///
 ' ///

 ' blink the status LED 3 times to show board is "alive", then enable VGA (leave LOW)
 DIRA[STATUS_LED_BUS_MUX] := 1 ' set to output
 OUTA[STATUS_LED_BUS_MUX] := 0

 repeat 6
 OUTA[STATUS_LED_BUS_MUX] := !OUTA[STATUS_LED_BUS_MUX]
 repeat 125_000

 ' turn on VGA buffer (and status LED)
 OUTA[STATUS_LED_BUS_MUX] := 0

 ' initialize SPI IO (eventhough, we aren't using it in this demo at all,
 ' good habit to set it up)
 SPI_Init

 ' and here's the demo!
 term_vga.Out($00)

 repeat
 term_vga.pstring(string ("Hello world from the Prop C3!!! "))
 Delay_MS(75)

' end Main

The single VGA driver object is included at the top in the OBJ section, then we fall into the Main()
function. The first and most important thing that happens here is we start the VGA driver with the correct
control bits. Refer to the driver itself and the start() function for more details, but the %10111 code
sets things up correctly for the C3. Next, we get into the setting of the IO port
STATUS_LED_BUS_MUX; remember this controls the VGA buffer and we have to enable it (active
low) for VGA to make it out to the HD15 header. That’s what the highlighted code does.

Finally, we make to the main loop of the program which simply prints to the screen the “Hello world...”
message in an infinite loop or at least until our sun goes super nova.

3.3.3 Audio Demo
The audio demo uses a single Propeller IO port routed into a low-pass filter. This is how most Propeller
boards generate sound. As discussed in the Hardware portion of this manual, PWM signals are used to
generate an analog signal. This is how the C3 works as well, so any audio driver that uses PWM and
sends it out a Propeller IO pin will work to generate sound. You just have to set the pin correctly on the
driver which on the C3 is named AUDIO_MONO (P24 on the C3). For our little demo, we are going to
use a sound driver developed for the HYDRA, named NS_sound_drv_052_11khz_16bit.spin. The

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 44 of 95

driver is very powerful and its documentation is embedded in the source comments. The demo program’s
top level file is named c3_audio_demo_010.spin and you can find it on the FTP site here:

PropC3 \ Sources \ c3_audio_demo_010.spin

The demo prompts the user to enter in a frequency in Hz and then plays the sound in a chord for a
couple seconds with a specific ADSR envelope. Figure 3.3 below shows screen shots of the demo in
action. Of course, you MUST have an NTSC TV with A/V hooked up to the C3 along with a PS/2 keyboard
to enter data.

Figure 3.3 — Screen shot of the audio demo in action.

Referring to the figure, all you do is enter in a frequency (0..3000 Hz) and the demo plays the sound for
a couple seconds. The actual code that generates the sound makes a call to a function called
PlaySoundFM() as shown in the fragment below (note that the left-arrow symbol “←”indicates that the
line of code wraps due to space limitations in print, but it should be on one line when used.):

 ' play the sound
 snd.PlaySoundFM(0, snd#SHAPE_SQUARE, g_temp1, CONSTANT(←
Round(Float(snd#SAMPLE_RATE) * 2.8)), 200, $3579_ADEF)

 snd.PlaySoundFM(1, snd#SHAPE_SQUARE, (g_temp1*5)/4, CONSTANT(←
Round(Float(snd#SAMPLE_RATE) * 2.9)), 200, $3579_ADEF)

 snd.PlaySoundFM(2, snd#SHAPE_SQUARE, (g_temp1*6)/4, CONSTANT(←
Round(Float(snd#SAMPLE_RATE) * 3.0)), 200, $3579_ADEF)

As you can see, we make 3 calls to the sound function which starts 3 independent sounds at the same
time, thus creating a chord effect. We modify the frequency of each taking into consideration how chords
are supposed to be generated along with a little artistic license to make them sound good.

You can learn more about PlaySoundFM() by reviewing the sound driver itself, but here’s the main API
calling information for reference:

 PUB PlaySoundFM(arg_channel,arg_shape,arg_freq,arg_duration,arg_volume,arg_amp_env)|offset
 {{
 Starts playing a frequency modulation sound. If a sound is already
 playing, then the old sound stops and the new sound is played.

 arg_channel: The channel on which to play the sound (0-5)
 arg_shape: The desired shape of the sound. Use any of the
 following constants: SHAPE_SINE, SHAPE_SAWTOOTH,
 SHAPE_SQUARE, SHAPE_TRIANGLE, SHAPE_NOISE.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 45 of 95

 Do NOT send a SHAPE_PCM_* constant, use PlaySoundPCM() instead.
 arg_freq: The desired sound frequncy. Can be a number or a NOTE_* constant.
 A value of 0 leaves the frequency unchanged.
 arg_duration: Either a 31-bit duration to play sound for a specific length
 of time, or (DURATION_INFINITE | "31-bit duration of amplitude
 envelope") to play until StopSound, ReleaseSound or another call
 to PlaySound is called. See "Explanation of Envelopes and
 Duration" for important details.
 arg_volume: The desired volume (1-255). A value of 0 leaves the volume unchanged.
 arg_amp_env: The amplitude envelope, specified as eight 4-bit nybbles
 from $0 (0% of arg_volume, no sound) to $F (100% of arg_volume,
 full volume), to be applied least significant nybble first and
 most significant nybble last. Or, use NO_ENVELOPE to not use an envelope.
 See "Explanation of Envelopes and Duration" for important details.
 }}

3.3.4 Port A/B IO Demo
The port IO demo is nothing more than a few lines of code that takes user input and then writes to the
IO port headers A (P7..P0) or B (P23..P16) or reads the ports and prints to the NTSC screen. Not really
worth a demo, but the program is a nice template if you want to bit-bang the IO ports and read / write
from a console application running on the C3. The top level file for the demo is named
c3_port_io_demo_010.spin and you can find it on the FTP site here:

PropC3 \ Sources \ c3_port_io_demo_010.spin

Figure 3.4 below is a screen shot of the demo running. It has a little menu that allows you to select port
A or B, then a sub-menu that prompts for read or write to the port. As usual, you will need the NTSC
monitor and PS/2 keyboard plugged in.

The input parser for these demos allows you to enter data in decimal (default), hex $xx, or binary
%xxxxxxxx. Thus, for the bit-banging experiments you wanted to write all 1’s to the lower nibble of port A and all
0’s to the upper nibble. This would be 15 in decimal, but a more direct representation, so you don’t have to convert
your binary to decimal would be to write %00001111 as the input value. The parser is smart enough to convert.
Just make sure you prefix hex numbers with “$” and binary numbers with “%”.

Figure 3.4 — Screen shots of port IO demo.

 (a) Main menu. (b) Port A/B Submenu.

As an example, below is a fragment of the entire function that processes IO Port B. It is nearly identical
to the Port A code except that Port B (P23..P16) shares its IO with the VGA port, thus, the VGA buffer
has to be enabled, disabled as the port is used for general IO.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 46 of 95

PUB Port_B_Test

 '///
 ' VGA PORT B (P24..P16) "IO" TEST SUITE //////////////////////////////////////
 '///

 ' simply allows user to read/write values to port IOs P24..P16 shared with VGA

 repeat
 ' draw menu
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("VGA Port B IO Test Menu"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("1. Read Port IOs P23..P16."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("2. Write Port IOs P23..P16."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("3. Exit back to main menu."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Selection?"))

 ' get string from user
 Get_String(@g_sbuffer, 9)

 ' convert to integer
 g_key := atoi2(@g_sbuffer, 9)

 ' what is user requesting?
 case g_key
 1:
 ' make sure VGA is disabled (0 = ENABLED, 1=DISABLED)
 OUTA[STATUS_LED_BUS_MUX] := 1

 ' set VGA shared IOs to inputs
 DIRA[23..16] := %00000000

 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("-Press any key to stop scan-"))
 repeat 500_000

 ' scan and print IOs
 repeat while (kbd.gotkey == FALSE)
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("[P23..P16]="))
 gfx_ntsc.Bin_Term(INA[23..16], 8)
 gfx_ntsc.String_Term(string("|$"))
 gfx_ntsc.Hex_Term(INA[23..16], 2)
 gfx_ntsc.Out_Term("|")
 gfx_ntsc.Dec_Term(INA[23..16])

 kbd.key ' flush key
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term

 2:
 ' make sure VGA is disabled (0 = ENABLED, 1=DISABLED)
 OUTA[STATUS_LED_BUS_MUX] := 1

 ' set VGA shared IOs to outputs
 DIRA[23..16] := %11111111

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 47 of 95

 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Enter 8-bits values to write"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("to port [P23..P16] or -1 to"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("exit program."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Hex,Decimal or Binary formats:"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("$nn,nnn,%nnnnnnnn respectively."))
 gfx_ntsc.Newline_Term

 repeat
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Write Value?"))

 ' get string from user
 Get_String(@g_sbuffer, 9)

 ' convert to integer
 g_temp1 := atoi2(@g_sbuffer, 9)

 ' user wants to exit?
 if (g_temp1 == -1)
 quit

 ' write value to port
 OUTA[23..16] := g_temp1

 3:

 ' re-enable VGA buffer(0 = ENABLED, 1=DISABLED)
 OUTA[STATUS_LED_BUS_MUX] := 0

 return ' return to main menu

' end Port_B_Test

A fun way to experiment with the port IO demo is to place a single bi-color LED into one of the port A/B
headers anywhere. Then set one side of the LED to “1”, the other to “0”, this will turn the LED on, then
switch the data and turn it off. For example, go into the menu and work with Port A (P7..P0) and then
place a bi-color LED into port pins [P1, P0] (doesn’t matter which way since it will illuminate either way).
Then write a %01 to the port, then a %10 to the port; you will see the LED light up red/green (or
whatever the colors are).

If on the other hand you want to inject a signal into a port, I suggest connecting a 1 k resistor to 3.3 V
on one of the headers with power and then try reading port A or B continuously as you inject the “1”
signal into the port. The reason why we use the 1 k resistor, is so that if you short the 3.3 V supply to
ground with a straight wire it will reset the C3, but if you put a 1 k resistor inline that will inhibit that
problem.

3.3.5 NES Gamepad Demo
The port NES gamepad demo prints out the state of the NES gamepad(s) plugged into the C3 via the
Parallax NES Adapter (part # 32368). Basically, the code I used for the pre-programmed Quick-Start test
is the same code for the NES demo. So, the first thing is you will need the NES Adapter from Parallax (or
make your own) along with at least one NES compatible game pad. Insert the adapter into the C3 as

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 48 of 95

shown in Figure 1.3 back on page 6. Make sure to line the pins up with the bottom as shown in the
figure. The top level file for the demo is named c3_nesgamepad_demo_010.spin and you can find it
on the FTP site here:

PropC3 \ Sources \ c3_nesgamepad_demo_010.spin

Figure 3.5 below is a screen shot of the start menu and the demo running. It has a little menu that allows
you time to insert the adapter and gamepad then press any key to start scanning. As usual, you will need
the NTSC monitor and PS/2 keyboard plugged in.

Figure 3.5 — Screen shots of NES Gamepad demo.

 (a) Main menu. (b) Demo running.

3.3.6 Servo Port Demo
The Propeller, like any other microcontroller, has general IO pins. These pins can drive a digital servo
with a standard PWM signal. The problem with this though is that servos require a lot of current, are
inductive, and cause current spikes on the power rails when they stop, start, or are stalled. This induces
voltage changes to the system power supplies and potentially resetting the processor or wreaking other
havoc—all bad things.

Therefore, usually when you want to drive servos you would use a servo driver with a separate power
supply and/or buffering. Alas, the C3 doesn’t have all that extra hardware, but what it does have is a
rather robust servo IO port that has inline signal resistors to dampen the current spikes back to the
Propeller chip along with heavy 22 µF capacitors on each servo port. Together these allow you to easily
drive up to 4 servos (not simultaneously, without extra bypass capacitors).

As discussed in the Hardware section of the manual, the C3 has 4 servo ports, these are nothing more
than 4 headers with 3 pins each that have the signals [P7..P4, power, ground] in that order. If you plug a
standard servo into one or more of these ports, for example, the Parallax Standard Servo (#900-00005),
then you can control the servo with a standard PWM signal on the control pin (P7..P4). The power for the
servo can be sourced by the C3 via the servo port and is selected between [+3.3/5V] by moving the Tri-
Port Voltage Select jumpers in the top (3.3V) or bottom (5V) positions respectively. With that in mind,
for this demo, we are going to take a single Parallax servo and hook it up to servo port P4 (the right
most) as shown in Figure 3.6 below.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 49 of 95

Figure 3.6 — The hookup of our servo for the demo.

Make sure you connect the servo cable in the proper orientation with [white, red, black] top to bottom
on the header. These stand for [signal, power, ground].

Then we are going to download the demo program which is named c3_servo_demo_010.spin and
control the servo position with the local keyboard. The file can be found on the FTP site here:

PropC3 \ Sources \ c3_servo_demo_010.spin

Of course, in addition to a standard servo such as a Parallax (or Futuba), you will need the NTSC monitor
and local PS/2 keyboard for text entry. Once you have the program up and running you will see the menu
shown in Figure 3.7 below.

Figure 3.7 — Servo demo menu in action.

The program immediately falls into a loop that reads the keyboard and changes the angular position of
the servo from 0 to 180 degrees (give or take) based on the right and left arrow keys. Figure 3.8 below

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 50 of 95

shows an extreme close-up of the servo into the right-most port. Note the orientation and color of the
cable wires. Also, note than I have all 4 voltage select jumpers set to 5 V mode (lower position).

Figure 3.8 — Photo of servo cable inserted into servo port P4 on the C3 (extreme close up).

! The USB port may not be able to provide enough power to run servo motors, and you may need to provide
external power. When connecting external power to the C3, be sure to unplug the USB cable from the C3
before connecting external power.

Controlling servos is beyond the scope of this manual, but the Parallax document for the Standard servo
has a little overview and there are many articles, documents, and books on the subject. In fact, the
source code of the demo has a very in depth explanation of servo operation. Below is a complete listing
of the main demo function in the program:

PUB Servo_Demo

 '///
 ' "SERVO" PORT TEST SUITE //
 '///
{{
 There are 4 servo compatible 3-pin ports on the C3, these are not designed to
 drive servos per se, that is the ports are designed to use the 3-wire "servo"
 connectors that lots of customers like. That said, you "can" drive servos with
 the ports as long as you don't use huge servos with a lot of current draw and
 you don't try to drive multiple servos at the same time. Each servo port has a
 22uF cap across the power feed which is used to store charge when the servo
 needs high currents, this keeps the regulators voltages from dropping too low
 and resetting the processor. Now, if you want to drive servos a lot harder you
 can either get an external driver board, or you can try some of the following
 techniques:

 To drive servos then a good 100-220uf or greater should be put across each power
 feed as well as shunt inductive kick diodes on the servo side as shown below:

 C3 Side Servo Side Servo

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 51 of 95

 :
 :
 50ohm : _________
 P4..P7 --/\/\/-----------....----------------| |
 : | __ |
 +Vcc ------------------....----------------| | | |
 | : | | | | | |
 --- 22uF : --- ---- | | | |
 --- : C --- /\ D | | | |
 | : | /__\ | (*) |
 | : | | | |
 GND ------------------....----------------|_________|
 :
 : C = 100-2200uF
 D = snubber diode, high current schottky or 1N4001 will do

 This little demo simply drives all four servo ports at the same, so you can hook
 up a servo to any port and it will work. You can connect the servo to the servo
 ports P4...P7 with the WHITE lead toward the top of the board (signal) and the BLACK
 lead toward the bottom (ground). Any standard servo will work such as Parallax Standard
 (Futaba servos). The protocol to control a servo is rather simple; you send a square wave
 at a frequency of 1/20ms. The duty cycle of the square wave controls the servo position;
 as you control the HIGH time from 1-2ms the servo will rotate thru its range (180). Here's
 a Parallax reference:

 http://www.parallax.com/Portals/0/Downloads/docs/prod/motors/900-00005StdServo-v2.1.pdf
}}

 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("C3 Servo Demo V1.0"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Connect servo to any port..."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Use LEFT/RIGHT arrow keys to"))
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("rotate servo."))
 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Hit <ESC> key to exit."))

 gfx_ntsc.Newline_Term
 gfx_ntsc.Newline_Term
 gfx_ntsc.String_Term(string ("Servo angular position: "))

 g_tempx := gfx_ntsc.GetX
 g_tempy := gfx_ntsc.GetY

 g_temp1 := 200 ' starting position of servo, not to hyperrotate it
 g_temp2 := 0

 ' update display
 gfx_ntsc.GotoXY(g_tempx, g_tempy)
 gfx_ntsc.Dec_Term((g_temp1 - 200) / 5)
 gfx_ntsc.String_Term(string (" "))

 ' set servo port IOs to outputs
 DIRA[SERVO_P7..SERVO_P4] := %1111

 ' enter loop
 repeat

 OUTA[SERVO_P4..SERVO_P7] := %1111

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 52 of 95

 waitcnt (cnt + (160*g_temp1)) ' the servo signal's high pulse duration

 OUTA[SERVO_P4..SERVO_P7] := %0000
 waitcnt (cnt + 1_600_000 - (160*g_temp1)) ' the servo signal's low pulse duration

 ' user updating position?
 if (kbd.gotkey == TRUE)
 ' get key
 g_key := kbd.key

 ' right or left?
 if (g_key == ASCII_LEFT)

 if (g_temp1 < 1100)
 g_temp1 += 20

 elseif (g_key == ASCII_RIGHT)

 if (g_temp1 > 200)
 g_temp1 -= 20

 elseif (g_key == ASCII_ESC or g_key == ASCII_SPACE)
 ' set servo port IOs to back to inputs
 DIRA[SERVO_P4..SERVO_P7] := %0000

 ' return to caller
 return

 ' update display
 gfx_ntsc.GotoXY(g_tempx, g_tempy)
 gfx_ntsc.Dec_Term((g_temp1 - 200) / 5)
 gfx_ntsc.String_Term(string (" "))

' end Servo_Test

The demo uses Spin alone and crude timing loops to synthesize the duty cycle for the servo, about
20 ms total cycle time or a frequency 50 Hz with some percentage of that being high (1–2 ms), the rest
low. The high period positions the servo angle. This overall signal timing is controlled in the main loop
(highlighted in yellow) by a variable named g_temp1 that is updated by the <left> and <right> arrow
keys. To properly drive a servo, you should use a single cog with virtual timers in a tight loop to generate
microsecond accurate timings for as many servos as you wish. But, this little Spin demo gets you up and
running if you have never driven a servo before.

3.3.7 SPI Bus API Overview
The SPI bus hardware was discussed in the hardware section, so take a look at that to refresh your
memory if you have forgotten the details. To review, the SPI bus consists of a single shared SPI
compatible bus composed of 3 primary signals:

 MOSI (SPI_MOSI, P9) – Master Out Slave In.

 MISO (SPI_MISO, P10) – Master In Slave Out.

 CLK (SPI_SCK, P11) – Clock from Master.

Of course the Propeller is master, and there is actually no dedicated SPI hardware per se, this is all bit-
banged via the IO ports. In addition to the bus signals that are common to every single SPI device (they
are all hooked in parallel), each SPI device needs a chip select line, active low to select it. When it’s
selected all other devices on the bus must be de-selected and put into a high impedance state.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 53 of 95

The selection logic is composed of two IC’s; a 74LVC161A 4-bit counter labeled U11 which has 3 of its 4-
bit output connected to a 74LVC138A 3-8 bit decoder. Thus, the current count on U11 (0,1,2..7..15)
selects one of 8 outputs on the 138 (Y0n..Y7n) and asserts it. Thus, we use these signals as the chip
selects for channels 0..7 of the SPI system. And each device has a unique SPI channel and physically we
connect the SPI select signal to each device. To control the counter there are 2 signals; count and
reset. These signals control the up counting of the counter and the reset back to 0.

That’s the hardware interface, so let’s talk about the software API to take advantage of the SPI system in
a sane manner. But, before we do that, there are some good PDFs in this directory on SPI protocol if
you’re not proficient in it:

PropC3 \ Docs \ SPI_I2C \ *.*

All we need are a few functions to place the IOs in known state and then a function to select any SPI
channel, send and receive SPI data and that’s about it. With that in mind, here’s a list of the SPI API to
get you started on the C3:

SPI API Listing

PUB SPI_Init — This function initializes the SPI IO's, counter, and multiplexer, then selects channel 0
and returns.

PUB SPI_Select_Channel(channel) — This function sets the active SPI channel chip select on the SPI
multiplexer; this is accomplished by first resetting the SPI counter that feeds the SPI select decoder then
up counting the requested number of channels.

PUB SPI_Write_Read(num_bits, data_out, bit_mask) — This function writes and reads SPI data a bit
at a time (SPI is a circular buffer protocol), the data is in MSB to LSB format and up to 32-bits can be
transmitted and received, the final result is bit masked by bit_mask.

To use the API, first you always call SPI_Init at the beginning of your program to put the SPI system in
a known state and set the IOs in the correct direction and state. Then, if you want to access a device
(SD, FLASH, SRAM, etc.) you select the proper channel with SPI_Select_Channel (…) and then finally,
write/read to and from the device with the generic function SPI_Write_Read(…).

! There is only ONE common shared SPI bus on the C3, so be sure not to have more than one processor
(cog) accessing it at the same time.

Now let’s take a look at the code for each of the functions (this is an eBook and we have all the space we
want!). First, the SPI_Init function:

PUB SPI_Init
{{
This function initializes the SPI IO's, counter, and mux, selects channel 0 and returns.

PARMS: none.
RETURNS: nothing.
}}
 ' set SPI mux counter IOs up
 DIRA[SPI_SEL_CLK] := 1 ' set to output
 OUTA[SPI_SEL_CLK] := 0

 DIRA[SPI_SEL_CLR] := 1 ' set to output
 OUTA[SPI_SEL_CLR] := 0 ' CLR counter
 OUTA[SPI_SEL_CLR] := 1 ' allow counting
 ' set up SPI lines

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 54 of 95

 OUTA[SPI_MOSI] := 0 ' set to LOW
 OUTA[SPI_SCK] := 0 ' set to LOW

 DIRA[SPI_MOSI] := 1 ' set to output
 DIRA[SPI_MISO] := 0 ' set to input
 DIRA[SPI_SCK] := 1 ' set to output

 ' set SPI to NULL channel 0
 SPI_Select_Channel(0)

' end SPI_Init

The function simply sets all the IOs for the SPI bus to the proper state and selects SPI channel 0, the
NULL channel, and exits. Next, the SPI_Select_Channel (…) function is below:

PUB SPI_Select_Channel(channel)
{{
This function sets the active SPI channel chip select on the SPI mux, this is accomplished by
first resetting the SPI counter that feeds the SPI select decoder, then up counting the
requested number of channels.

PARMS:

channel : channel 0 to 7 to enable where the channels are defined as follows
 0 - NULL channel, disables all on/off board devices.
 1 - 32K SRAM Bank 0.
 2 - 32K SRAM Bank 1.
 3 - 1MB FLASH Memory.
 4 - MCP3202 2-Channel 12-bit A/D.
 5 - Micro SD Card.
 6 - Header Interface SPI6.
 7 - Header Interface SPI7.

RETURNS: nothing.

}}

 ' requesting channel 0? If so, easy reset
 if (channel == 0)
 ' clear the 161
 OUTA[SPI_SEL_CLR] := 0 ' CLR counter
 OUTA[SPI_SEL_CLR] := 1 ' allow counting
 return

 ' else non-null channel, count up to channel...

 ' first reset the SPI channel counter
 ' clear the 161
 OUTA[SPI_SEL_CLR] := 0 ' CLR counter
 OUTA[SPI_SEL_CLR] := 1 ' allow counting

 ' now increment to requested channel
 ' clock the 161
 OUTA[SPI_SEL_CLK] := 0

 repeat channel
 OUTA[SPI_SEL_CLK] := 1
 OUTA[SPI_SEL_CLK] := 0

' end SPI_Select_Channel

The selection logic begins by testing if the user is requesting channel 0, if so, rather than counting until
there is an overflow, a faster method is to reset the counter to 0, which brings me to an optimization. If

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 55 of 95

we really wanted to, we could have run the counter with a single IO signal as long as we reset it with the
C3 reset signal on boot. It would be a little slow, since if we ever wanted to select a channel less that the
current channel, we would have to roll all the way around, but with proper code ordering, the impact
would be small and we could have saved another IO, but I like the idea of a reset. Anyway, moving on,
after the channel 0 test, we simply reset the counter and count up to the proper channel. Now, there is a
clear optimization here that we can make and that’s to keep a static global that tracks the current
channel and if a request is made for the same channel or one that is numerically higher, then all we have
to do is clock the counter target—current times.

For example, say the channel is currently set at channel 3 and the user wants channel 7, well, instead of
resetting, we can simply clock (7-4) times since we are already at count 4. I kept the function simple
without that feature, but add it if you like. The final and most important function is the actual SPI
read/write function. As you might know SPI is a circular buffer protocol that writes and reads at the same
time, so many times when you read data, you have to write dummy data (usually $00 or $FF) and that
confuses newbies to SPI sometimes, they don’t see why a read is writing as well? That’s why—no matter
what when you clock a bit in, you clock a bit out. With that, let’s take a look at the final function in the
SPI API that performs the read/write:

PUB SPI_Write_Read(num_bits, data_out, bit_mask) | data_in
{{
This function writes and reads SPI data a bit at a time (SPI is a circular buffer protocal),
the data is in MSB to LSB format and up to 32-bits can be transmitted and received, the final
result is bit masked by bit_mask

PARMS:

num_bits : number of bits to transmit from data_out
data_out : source of data to transmit
bit_mask : final result of SPI transmission is masked with this to grab the relevant least
significant bits

RETURNS: data retrieved from SPI transmission

}}
 ' clear result
 data_in := 0

 ' now read the bits in/out
 repeat num_bits
 ' drop clock
 OUTA[SPI_SCK] := 0

 ' place next bit on MOSI
 OUTA[SPI_MOSI] := ((data_out >> (num_bits-- - 1)) & $01)

 ' now read next bit from MISO
 data_in := (data_in << 1) + INA[SPI_MISO]

 ' raise clock
 OUTA[SPI_SCK] := 1

 ' set clock and MOSI to LOW on exit
 OUTA[SPI_MOSI] := 0
 OUTA[SPI_SCK] := 0

 ' at this point, the data has been written and read, return result
 return (data_in & bit_mask)

' end SPI_Write_Read

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 56 of 95

The function is well commented, so just peruse it, but I want to bring your attention to a really cool
feature. Most SPI transactions are 8 bits, some systems have 9 bits which make interfacing fixed
hardware 8-bit SPI transceivers difficult since you must use a pair of 8-bit writes with dummy data to
make up the 9-bit write. This brings me to the design feature that I programmed into the function that
allows variable-bit-length data to be written. Many SPI transactions are multiplies of a byte; for example,
an SPI command might consists of 2 bytes, 3 bytes, or more. Thus, there is no need to have multiple
calls to the function when we can process up to 32 bits at once. So, I made the function take as a
parameter the number of bits to send and receive. This is really handy when you are programming an
SPI device and it says that you need 2 bytes for a command, you can just build up a single 16-bit packet
instead of two 8-bit packets! And many commands require the command (1 byte) followed by 1–2
address bytes, so 3 byte commands are now very convenient and even 4 byte commands with 1 byte
followed by 3 address bytes. The function handles all of them. For example, say you wanted to write 2
bytes to the SPI bus channel 7 (some external device), here’s what you would do:

SPI_Select_Channel (7)
SPI_Write_Read(16, %00000101_00000000, $00)

This code selects channel 7, then it writes the two bytes to the SPI device %00000101_00000000. The
bitmask at the end indicates we don’t care about any result, just mask it all off to 0’s.

That wraps it up for the SPI API, you will see this time and time again in the remaining demos. You will
need to copy this code from one of the demos or write something similar if you plan to communicate with
the SPI devices on the C3.

3.3.8 SRAM Demo
As mentioned in the Hardware section of the manual, the C3 has two Microchip 32 K byte SPI SRAMs
(part #23K256). The SRAMs have a rather robust set of functionality which is outlined in the data sheet.
The SRAMs are non-trivial and if you want to expose all their functionality and speed, you should
definitely read the data sheet which is located on the FTP site here:

PropC3 \ Docs \ Datasheets \ 23K256.pdf

Of course, to get you started I have created a simple API that allows you to read, write, and fill them
with data. With these functions you can access the 64 KB of space and immediately put it to use.
However, the driver functions are written in Spin, so if you want to speed them up, you will have to
recode to ASM (along with the SPI driver itself). With that said, the SRAM data sheet will give you all the
architectural details of the SRAMs themselves, but from our perspective what we are interested in is
reading, writing, and understanding the three modes of operation which are:

 Byte Operation — A single byte is read or written.

 Page Operation — A page of 32 bytes is read or written.

 Sequential Operation — Any number of bytes is read or written.

Most SPI devices, whether they be SRAM, FLASH, or other array-based memory devices, have a number
of optimized access modes to decrease the amount of SPI traffic to read and write data. For example, to
write a single byte to the SRAM, you first need to address the byte (2 bytes) and then write the byte
(1 byte) and let’s not forget the command itself (1 byte). Therefore, to write a single random access
byte is four bytes of information! That’s a huge waste. But, if you need to randomly access the SRAM,
that’s what to expect. But, what if you want to write a continuous stream of bytes? Maybe you have a
1024 byte buffer in Propeller hub RAM that you want to copy to the SPI SRAM? Well, that’s where the
sequential mode comes in. In this mode, you write the instruction for sequential access, then the
address, then you write byte after byte, so the overhead to write 1024 bytes is nearly 0.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 57 of 95

Therefore, a complete API would have these modes and would either allow user selection via function
names or parameters or maybe automatic mode selection based on the data sent, size, etc. Some options
to think about…

The interesting thing about the Microchip SRAMs is their simplicity in commands. They only have 4
commands as shown in Table 3.1 below.

Table 3.1 — SRAM commands.

Instruction Name Value Description

READ 0000 0011b
Read data from memory array beginning at
selected address.

WRITE 0000 0011b
Write data to memory array beginning at selected
address.

RDSR 0000 0101b Read STATUS register.

WRSR 0000 0001b Write STATUS register.

You may note there is no mention of the 3 modes of operation; byte, page, sequential. These are set
once by writing the status register and then the chip is in that mode until you change it—read the data
sheet to learn more.

SRAM API Overview

Our little API is very simple and consists of a few functions, here are their prototypes:

PUB SRAM_Init (...) — Initializes the SRAMs and sets them to sequential mode.

PUB SRAM_Write(...) — Writes bytes of data from a buffer to either SRAM.

PUB SRAM_Fill(...) — Fills either SRAM with a constant value.

PUB SRAM_Read(...) — Reads data from either SRAM into a buffer.

PUB SRAM64K_MREAD(...) — Models the pair of 32 KB SRAMs as a single memory of 64 KB and reads a
byte from it.

PUB SRAM64K_MWRITE(...) — Models the pair of 32 KB SRAMs as a single memory of 64 KB and writes
a single byte to it.

So, to use the SRAMs you first make a call to SRAM_Init, and then you make calls to SRAM_Write,
SRAM_Read, etc. as needed. Also, since there are two SRAMs, you call the first write, read, and fill
functions with a parameter that indicates the SRAM bank:

 SPI_CHAN_SRAM0 = 1 ' 32K SRAM Bank 0.
 SPI_CHAN_SRAM1 = 2 ' 32K SRAM Bank 1.

But, with the later functions SRAM64K_MREAD and SRAM64K_MWRITE, these functions take an
address from 0..64 KB and then auto-select the correct SRAM bank for the internal SPI calls. Therefore,
you can use this pair of functions almost as if they are accessing a 64 K byte array which is a nice
abstraction to make.
With that in mind, let’s take a look at the demo. Its name is c3_sram_demo_010.spin and you can
find the file in the FTP site here:

PropC3 \ Sources \ c3_sram_demo_010.spin

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 58 of 95

Figure 3.9 — SRAM Demo Menu

This demo has the most complex menu thus far as shown in Figure 3.9. Let’s take a quick look at each
function and how it works one menu item at a time:

1. Read Status Reg Bank0 (B0) — This simply prints out the status register for SRAM bank 0.

2. Read Status Reg Bank1 (B1) — This simply prints out the status register for SRAM bank 1.

3. Write B0[start, val, numbytes] — This writes SRAM bank 0 with the value val at the starting
location start with numbytes bytes.

4. Read B0[start, numbytes] — This reads numbytes bytes from SRAM bank 0 starting at memory

location start.

5. Write B1[start, val, numbytes] — This writes SRAM bank 1 with the value val at the starting
location start with numbytes bytes.

6. Read B1[start, numbytes] — This reads numbytes bytes from SRAM bank 1 starting at memory

location start.

7. Write single byte[0..64K] — This function uses the 64K functions to write a single byte to any
location from 0 to 64K.

8. Read single byte[0..64K] — This function uses the 64K functions to read a single byte from any

location 0 to 64K.

9. Exit back to main menu — Just loops back to the menu.

Now, a couple tips about using the menu. Most items have prompts, you can edit your inputs, that means
backspace, and remember you are allowed to use hex $xx, binary %xxxxxxxx or decimal input values.
For example, when you write the SRAM, you might want to write 100 bytes with the value $FF starting at
$100. These are all valid inputs and the parser will understand.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 59 of 95

SRAM API Code Listing

Now, let’s take a look at the SRAM functions themselves (this is an eBook, so plenty of room).

PUB SRAM_Init (mode) | _spi_word
{{
This function initializes both banks of the Microchip 23K256 SRAMs
serial SPI SRAMs'. The initialization simply sets the STATUS register
of each SRAM into "byte", "page" or "sequential" read/write mode to allow more
efficient access of the SRAMs. The SRAM API currently relies on "sequential"
mode, so if yoo want to use them, this function should be called with SPI_MODE_SEQUENTIAL

The 23K256 supports a number of commands, we have
only implemented a couple here in these API functions (single byte read/write,
multiple byte read/write). However, there are many others you can implement, find
out more by reviewing the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: mode - %00_00000_1 = SPI_MODE_BYTE
 %10_00000_1 = SPI_MODE_PAGE
 %01_00000_1 = SPI_MODE_SEQUENTIAL

RETURNS: Nothing.

}}

 ' first set SRAM bank 0 to sequential access mode (see page 6 of data sheet)
 SPI_Select_Channel(SPI_CHAN_SRAM0)

 ' write status register command "sequential access mode" along with disable "HOLD"
 ' to setup SRAM for sequential reading/writing
 SPI_Write_Read(16, %0000000_1 << 8 | mode , $FF)

 ' now select SRAM bank 1
 SPI_Select_Channel(SPI_CHAN_SRAM1)

 ' write status register command "sequential access mode" along with disable "HOLD"
 ' to setup SRAM for sequential reading/writing
 SPI_Write_Read(16, %0000000_1 << 8 | mode , $FF)

 ' and finally de-select all SPI devices
 SPI_Select_Channel(0)

' end SRAM_Init

' ///

PUB SRAM_Write(bank, addr, num_bytes, src_buffer_ptr) | _index, _data, _spi_word
{{
This function writes a number of bytes to either bank of the Microchip 23K256
serial SPI SRAMs' from a buffer. The 23K256 supports a number of commands, we have
only implemented a couple here in these API functions (single byte read/write,
multiple byte read/write). However, there are many others you can implement, find
out more by reviewing the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: bank - [0,1] the SRAM bank to write to, there are two banks, each holds 32K
 bytes

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 60 of 95

 addr - address in SRAM to write to [0...32767]
 num_bytes - number of bytes to write from source buffer to SRAM
 src_buffer_ptr - pointer to the buffer of bytes to write to SRAM

RETURNS: number of bytes written

}}

 ' test if there is anything to write?
 if (num_bytes => 1)

 ' select SPI channel for requested SRAM bank
 SPI_Select_Channel(SPI_CHAN_SRAM0 + bank)

 ' set instruction word (write sequential byte:8 | address:16)
 _spi_word := (%00000010 << 16) + (addr)

 ' and now send command to SRAM for sequential writing
 SPI_Write_Read(24, _spi_word, $FF)

 ' write the bytes into the SRAM
 repeat _index from 0 to num_bytes-1

 ' get byte to write
 _data := byte[src_buffer_ptr][_index]

 ' write the byte
 SPI_Write_Read(8, _data, $FF)

 ' de-select SRAM SPI channel
 SPI_Select_Channel(0)

 ' return bytes written
 return(num_bytes)

 else
 ' catch error
 return 0

' end SRAM_Write

' ///

PUB SRAM_Fill(bank, addr, num_bytes, value) | _index, _data, _spi_word
{{
This function writes a constant value to either bank of the Microchip 23K256
serial SPI SRAMs' from a buffer. The 23K256 supports a number of commands, we have
only implemented a couple here in these API functions (single byte read/write,
multiple byte read/write). However, there are many others you can implement, find
out more by reviewing the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: bank - [0,1] the SRAM bank to write to, there are two banks, each holds 32K
 bytes
 addr - address in SRAM to write to [0...32767]
 num_bytes - number of bytes to write from source buffer to SRAM
 value - byte value to write to SRAM

RETURNS: number of bytes written

}}

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 61 of 95

 ' test if there is anything to fill?
 if (num_bytes => 1)

 ' select SPI channel for requested SRAM bank
 SPI_Select_Channel(SPI_CHAN_SRAM0 + bank)

 ' set instruction word (write byte sequential:8 | address:16)
 _spi_word := (%00000010 << 16) + (addr)

 ' setup for sequential byte write, this includes the command and address only
 SPI_Write_Read(24, _spi_word, $FF)

 ' now the chip is ready to receive bytes (as many as we want to send)
 repeat _index from 0 to num_bytes-1
 SPI_Write_Read(8, value, $FF)

 ' de-select SRAM channel
 SPI_Select_Channel(0)

 ' return bytes written
 return(num_bytes)

 else
 ' catch error
 return 0

' end SRAM_Fill

' ///

PUB SRAM_Read(bank, addr, num_bytes, dest_buffer_ptr) | _index, _data, _spi_word
{{

This function reads a number of bytes from either bank of the SRAM into a buffer.

The 23K256 supports a number of commands, we have only implemented a couple here
in these API functions (single byte read/write, multiple byte read/write).
However, there are many others you can implement, find out more by reviewing
the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: bank - [0,1] the SRAM bank to read from, there are two banks, each holds
 32K bytes
 addr - address in SRAM to read from [0..32767]
 num_bytes - number of bytes to read from SRAM into destination buffer
 dest_buffer_ptr - pointer to the buffer of bytes to read SRAM into

RETURNS: number of bytes read

}}

 ' test for anything to read?
 if (num_bytes => 1)

 ' select SPI channel for requested SRAM bank
 SPI_Select_Channel(SPI_CHAN_SRAM0 + bank)

 ' set instruction word (read byte sequential:8 | address:16)
 _spi_word := (%00000011 << 16) + (addr)

 ' setup for sequential byte read, this includes the command and address only

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 62 of 95

 SPI_Write_Read(24, _spi_word, $FF)

 ' now the chip is ready to be read from
 repeat _index from 0 to num_bytes-1

 ' read next byte from SRAM into receiving buffer
 byte [dest_buffer_ptr][_index] := SPI_Write_Read(8, $00, $FF)

 ' de-select SRAM channel
 SPI_Select_Channel(0)

 ' return bytes read
 return(num_bytes)
 else
 ' catch error
 return 0

' end SRAM_Read

' ///

PUB SRAM64K_MREAD(addr) | _spi_word, _data
{{
This function reads a single byte from either bank of the Microchip 23K256
serial SPI SRAMs'. This function is different from the SRAM_Read function
in that it accesses the two banks of SRAM as a contiguous region of 64K bytes
for you, and thus can be though of as a crude "array" access macro, rather
than a function. Ultimately, this should be converted to ASM along with
all the other important peripheral access methods.

The 23K256 supports a number of commands, we have
only implemented a couple here in these API functions (single byte read/write,
multiple byte read/write). However, there are many others you can implement, find
out more by reviewing the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: addr - address in SRAMs to write to [0...65535].

RETURNS: The 8-bit data from the SRAM.

}}
 ' the only tricky thing here is we need to take an address 0..65535 and then
 ' decide which bank it refers to and which byte in that bank, basically, some
 ' bit masking and shifts to accomplish this

 ' select SPI channel for requested SRAM bank
 SPI_Select_Channel(SPI_CHAN_SRAM0 + (addr >> 15))

 ' set instruction word (read byte sequential:8 | address:16 | dummy:8)
 _spi_word := (%00000011 << 24) + (addr << 8) + 0

 ' read the byte of data
 _data := SPI_Write_Read(32, _spi_word, $FF)

 ' de-select SRAM SPI channel
 SPI_Select_Channel(0)

 ' return data
 return (_data)

' end SRAM64K_READ

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 63 of 95

' ///

PUB SRAM64K_MWRITE(addr, data) | _spi_word
{{
This function writes a single byte to either bank of the Microchip 23K256
serial SPI SRAMs'. This function is different from the SRAM_Write|Fill functions
in that it accesses the two banks of SRAM as a contiguous region of 64K bytes
for you, and thus can be though of as a crude "array" access macro, rather
than a function. Ultimately, this should be converted to ASM along with
all the other important peripheral access methods.

The 23K256 supports a number of commands, we have
only implemented a couple here in these API functions (single byte read/write,
multiple byte read/write). However, there are many others you can implement, find
out more by reviewing the chip specs and data sheets found here:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en539039
http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf

PARMS: addr - address in SRAMs to write to [0...65535].
 data - the byte to write.

RETURNS: Nothing.

}}

 ' the only tricky thing here is we need to take an address 0..65535 and then
 ' decide which bank it refers to and which byte in that bank, basically, some
 ' bit masking and shifts to accomplish this

 ' select SPI channel for requested SRAM bank
 SPI_Select_Channel(SPI_CHAN_SRAM0 + (addr >> 15))

 ' set instruction word (write sequential byte:8 | address:16 | data: 8)
 _spi_word := (%00000010 << 24) + ((addr & $7FFF) << 8) + data

 ' write the byte of data
 SPI_Write_Read(32, _spi_word, $FF)

 ' de-select SRAM SPI channel
 SPI_Select_Channel(0)

' end SRAM64K_WRITE

The functions are very short, only a few lines each (mostly comments), but you will notice a pattern in
them; they all select the SPI channel, then build the command in the binary format:

[word+address+[data]]

Then start the write/read process. Also, remember addresses need to be from [0..32K], data is always 8-
bit bytes, and the bank is 0/1. Of course, the 64K functions take addresses [0..64K] and no bank. First, to
use the SRAM functions, you need to have all the SPI bus functions in your source and make the call to
SPI_Init, then you need to make a call to SRAM_Init (…) with the proper parameter as shown below:

� always do this once at the top of your code if you want to use the SPI bus,
� also make sure to include the SPI bus functions source to read/write data..
SPI_Init

� initialize the SRAMs and set them to sequential mode, the API requires this
SRAM_Init (SPI_MODE_SEQUENTIAL)

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 64 of 95

The SRAM functions obviously can be optimized quite a bit algorithmically and by using ASM as well. But,
for now, start with the Spin routines, they should be fast enough to experiment around then you can
upgrade to ASM or whatever you like to do.

3.3.9 Simple A/D Demo
Analog to digital conversion is becoming more and more desired in control applications. Even low cost
microcontrollers come equipped with one or more analog to digital convertors that operate
asynchronously to the processing core. However, the philosophy of the Propeller chip is virtualization of
hardware peripherals through software emulation; therefore, the Propeller does not have any A/D (or D/A
for that matter). Our options are to emulate analog to digital conversion with software or use an
external A/D.

Using the counter modules with simple R/C timing circuits is a low cost viable solution, however it
requires one cog and 4 I/O pins for two channels. Wasting I/O pins isn’t something we want to do with
the C3. Rather, the C3 has an external, very accurate 12-bit, dual channel successive approximation SPI
A/D based on the Microchip MCP3202 chip. The MCP3202 is a very capable chip from an operational
point of view. It has two analog inputs labeled channel 0 and 1. These can sample a single ended signal
or be coupled into a differential mode of operation. Also, since we are running the A/D at 5V, the input
signals can range from 0–5 V and the sampling occurs at a rate of 100 ksps (kilo samples per second).
Thus, you can easily sample audio signals in real-time as well as make a poor man’s two channel logic
analyzer or o-scope with the C3!

Analog to digital conversion is a very complex subject, so I suggest you read up on the nuances of it if
you haven’t worked with it before. That said, the data sheet is a must if you want to program the
MCP3202 yourself, so please review it. You can find the data sheet located on the FTP site here:

PropC3 \ Docs \ Datasheets \ 23K256.pdf

As usual, I have created a simple API to read the MCP3202 A/D channels in single-ended mode. The
sample API is used as part of the demo program which is named c3_analog_digital_demo_010.spin
and is located on the FTP site here:

PropC3 \ Sources \ c3_analog_digital_demo_010.spin

Figure 3.10 — Simple A/D demo in action.

Figure 3.10 shows a screen shot of the demo running. I tried to use a little ASCII art to represent the
actual signal header on the C3, so there is no confusion about what goes where. As you can see, you
need to inject the signal(s) into pin(s) 3, 4, both or one. If you leave one open, I suggest grounding it so

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 65 of 95

it doesn’t pick up noise. A simple circuit you can make is to use a pair of potentiometers (1 kΩ to100 k)
and apply the ground and +5 V to the outside contacts (pins 1,3) and then the wiper (pin 2) in the
middle will output 0..5 V as you rotate it back and forth. Figure 3.11 shows a test rig setup that I
constructed to test the A/D on the C3.

Figure 3.11 — A/D test rig.

Referring to Figure 3.11, I built the circuit on a mini-solderless breadboard (Parallax Part #700-00012).
This is very convenient for quick and dirty designs. Also, I made a little colored cable (purple, gray, white,
black) with a header on it to connect to the analog to digital port. Once you have your C3 setup this way
or similar, then you can let the program run as shown in Figure 3.10(b), it simply prints the channel
values out 0..4095.

Input Impedance — Although I said that you can use any value of a potentiometer to generate the analog voltage
from 0 to 5 V, there is a whole section on input impedance in the data sheet for the MCP3202 which outlines best
practices for impedance matching your inputs. In general, the lower your input’s impedance is the better. But, refer
to the MCP3202 datasheet, especially Figure 4.1, page 12.

Analog to Digital API Listing
The MCP3202 is accessed via the SPI bus channel 4. Reading the A/D is simply a matter of sending the
correct SPI request and then reading the data back. Referring to Table 5.1 in the MCP3202 datasheet,
reading the value of either channel requires a single SPI transaction! You simply send a few control bits
that indicate single or differential mode and which channel, and the device returns a 12-bit value
[0..4095] which represents the voltage on the channel relative to the Vdd/Vref pin. The C3 uses 5 V for
Vdd/Vref, thus 0 V on a channel results in 0 being returned, and 5 V on the channel input results in 4095
being returned. The call is so simple a function isn't even required, a single line of code reads the A/D
with a generic SPI call:

SPI_Write_Read(17, %0001_1C_1_0000000000000, $FFF)

' (where C=(0|1) refers to channel 0,1)

Nevertheless, there are two functions I provided to access the A/D converter:

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 66 of 95

PUB AD_Init — Initializes the A/D converter.

PUB AD_Read(...) — Reads channel 0/1 in single ended mode 5 V range.

Here’s the complete source code for the functions:

PUB AD_Init

{{
This function initializes the MCP3202 A/D converter. Currently, does nothing
more than asserts the CS then de-asserts it.

PARMS: None.

RETURNS: Nothing.

}}

 ' select and de-select the A/D device on the SPI bus just to wake it up and
 ' make sure we know the state of the A/D
 SPI_Select_Channel(0)
 SPI_Select_Channel(SPI_CHAN_AD)
 SPI_Select_Channel(0)

' end AD_Init

' ///

PUB AD_Read(channel) | _data

{{
This function reads from the MCP3202 the sent AD channel (0,1) in single ended mode and
returns a 12-bit integer [0..4095] representing the value.

PARMS: channel - [0,1] which channel to read.

RETURNS: returns value of A/D converter [0..4095]

}}

 ' read channel 0, SPI transaction is 17 bits total,
 ' control bits indicate single ended mode, channel (0,1)
 SPI_Select_Channel(SPI_CHAN_AD)
 _data := SPI_Write_Read(17, %0001_10_1_0000000000000 | channel << 14, $FFF)
 SPI_Select_Channel(0)

 ' return A/D value
 return (_data)

' end AD_Read

As usual, to use any SPI-related functions make sure to include the SPI bus API library sources and make
a call to SPI_Init(…) as your first call before making any other calls.

3.3.10 A/D Plus SRAM Demo
This demo is really nothing more than a hybrid of the SRAM demo and the A/D demo, so look to those
for details about the SRAM and A/D converter. This hybrid demo illustrates crude data logging and
records the values A/D converter 0 as a function of time. As its recording, it writes the 12-bit data into

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 67 of 95

the SRAM bank 0,1 in the format [8:4]-bits. Then the demo stops recording and plays back the data to
the screen. The idea here is the analog input could have been audio or something else, and instead of
printing numbers to the screen, it could control a servo, or speaker, or whatever.

The name of the demo is c3_ad_sram_demo_010.spin and you can find it on the FTP site here:

PropC3 \ Sources \ c3_ad_sram_demo_010.spin

To run the demo you will need the NTSC monitor and PS/2 keyboard as usual, along with some source of
analog input on Channel 0 of the Analog to Digital port. Figure 3.12 shows the demo start up, recording,
and playback respectively left to right.

Figure 3.12 — The Hybrid A/D plus SRAM Demo

 (a) Start up. (b) Recording phase. (c) Playback phase.

The demo records 2000 samples at a rate of 10–20Hz (it’s only slow because it has to print to the
screen), and then plays back at the same rate, so you can see the data as it scrolls by. Of course, we
have enough memory to record 32,768 samples at 12 bits without compression. But, right now the demo
writes a byte to bank 0 and the remaining 4 bits of the sample to bank 1 of the SRAM. The remaining
4 bits of each byte in bank 1 is unused.

 With simple compression such as wavelet, run length, etc. you can get 2–10x compression ratios easily.
Therefore the 64 KB of SRAM at 8 bits per sample could potentially store a minute or more of mono audio data at
11kHz sampling rates.

3.3.11 FLASH Memory Demo
The FLASH memory on the C3 consists of a single 8 mega-bit SPI FLASH which is organized at 4096
pages of 256 bytes. The chip we are using is the Atmel AT26DF081A-SSU, for more information on the
hardware design review the Hardware manual and make sure to read the data sheet located here on the
FTP site:

PropC3 \ Docs \ Datasheets \ AT26DF081A.pdf

The FLASH memory is the most complex chip on the C3 (other than the Propeller chip itself). In fact, the
FLASH chip has a small state machine inside which manages all the reads, writes, and power states. More
or less, the FLASH is a poor mans solid state disk drive. The AT26DF081 has around 20 commands,
advanced hardware and software data protection, single or sequential byte access modes and the ability
to withstand 100,000+ programming cycles before the chip starts to degrade. In fact, after 100,000
cycles the only adjustment you have to do when writing is potentially do a read-back and re-write
operation. I personally have found that you can get a million cycles out of these chips no problem. Of
course, you can read them forever without any degradation.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 68 of 95

Understanding and using FLASH memories is very important since the introduction of FLASH and solid state
drives into PC computing. The issue of finite write cycles is addressed in many operating systems with wear
leveling which is a technique where data is written to different parts of a FLASH drive that is erased frequently to
increase the longevity of the FLASH medium. It is very common on embedded systems.

The API for the FLASH is rather complex, but I have insulated you from as much pain as possible. We will
take a look at the API, but first let’s see the demo program in action. The name of the demo is
c3_flash_demo_010.spin and it’s located on the FTP site here:

PropC3 \ Sources \ c3_flash_demo_010.spin

Figure 3.13 — The FLASH demo program in action

Referring to Figure 3.13, the demo starts off with a menu consisting of 5 primary options. These options
have functions that exercise the API, so you can use them for reference in your code to get you started.
Let’s take an in depth look at them, so it’s clear how to use the demo.

1. Read STATUS register This option reads the internal STATUS register and prints it to the

screen. The STATUS register controls global protection as well as
indicates status of any pending operations. You can read more about it
on page 19 of the Atmel AT26DF081A data sheet mentioned earlier.

2. Write STATUS register This option allows you to directly write to the STATUS register and

effect any changes you might like to make to the chip. For example,
one of the most important things to understand about FLASH memories
is they go through a lot of trouble to protect themselves from
accidental writes. Therefore, before any write operation you have to
set a “write enable” bit in the STATUS register then perform the write
operation itself.

3. Write [start,value, numbytes] This option allows you to write any value to a number of bytes at any

starting location. The option as usual will guide you through the inputs
and takes either decimal (default), hex inputs ($xx..) or binary (%xx..)
for your convenience. Note: you can only write a memory location that
has not been written to. Once a memory location has been written to,
you can’t alter it, you must erase the block, sector, or the entire chip
first to clear the memory location.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 69 of 95

4. Read [start,numbytes] This option allows you to read any portion of the FLASH memory and
print it to the screen in a nice hex table format. You send the starting
address and number of bytes you wish to read.

5. Erase chip This option performs a bulk erase of the FLASH chip and resets all

memory cells back to $FF. It usually takes a few seconds.

6. Exit back to main menu Just loops back to this menu.

FLASH API Listing

Before we get into the API, here are a couple more interesting pieces of information. The FLASH chip
runs up to 70 MHz on the SPI bus and is compatible with the JEDEC spec for FLASH memory and pin
outs. In other words, if you have written a FLASH driver for say a Microchip, or ST part, chances are it
will take moments to port it to this chip. That said, FLASH chips have complex functionality and writing a
generic driver that supports all the functions would be a waste. Therefore, I have provided a starter API
here to get you going, so you can write, read, erase the chip, and start experimenting. I am sure there
are numerous serial FLASH drivers you can find for the chip and even some in Spin! Here's a list of the
API functions:

PUB Flash_Read(flash_start_addr, buffer_ptr, num_bytes) — Reads bytes from flash into a buffer.

PUB Flash_Write(flash_start_addr, buffer_ptr, num_bytes) — Writes bytes to flash from buffer.

PUB Flash_Erase(block) — Erases a block of the flash.

PUB Flash_Erase_Chip(wait) — Erases the entire chip.

PUB Flash_Close — Closes the flash (not much now, but this is a good place to de-allocate things in the
future).

PUB Flash_Open — Opens the flash (again not much now, but this is a good place to allocate
things in the future).

PUB Flash_Write_Status (status) — Writes the STATUS register of the flash memory.

PUB Flash_Read_Status — Reads the STATUS register of the flash memory.

These functions more or less give you access to the FLASH memory and are based on a handful of the
FLASH commands (read the datasheet to learn more).

Additionally, this demo has a number of definitions/constants in the CON to help deal with the chip, so
pay attention to those. If you want to pull the source from this file to build an application then you will
need those constants (copied below for reference):

'//
' FLASH MEMORY DEFINES //
'//

' defines for the proper FLASH installed on C3 4MB, 8MB, 16MB
' 4Mb (512K Bytes)
AT26F004 = 4 ' numeric codes for flash version
AT25DF041A = 4

' 8Mb (1M Bytes)

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 70 of 95

AT26DF081A = 8
AT25DF081A = 8

' 16 Mb (2M Bytes)
AT25DF161 = 16

' set type of FLASH ROM currently installed in C3 (8MBit) for conditional
'compilation of code -- not supported in SPIN, so manually done below :(
FLASH_ROM = AT26DF081A
NUM_FLASH_ROM_SECTORS = 19 ' 11 for 4MB, 19 for 8MB, must be set manually due to lack of
 ' conditional compilation

' Atmel 2F004/8xxx series basic commands
WRITE_ENABLE = $06
WRITE_DISABLE = $04
READ_STATUS = $05
WRITE_STATUS = $01
READ_DATA = $03

SEQ_PROGRAM = $AF
BYTE_PROGRAM = $02

BLOCK_ERASE4 = $20
BLOCK_ERASE32 = $52
BLOCK_ERASE64 = $D8

SECTOR_ERASE = $20

CHIP_ERASE = $60
JEDEC_ID = $9F

PROTECT_SECTOR = $36
UNPROTECT_SECTOR = $39

' custom commands we make up, not part of chip spec, just used here, start at code 0xF0
UNPROTECT_CHIP = $F0

Additionally, there is a data structure that holds starting addresses of sectors. The Atmel chip like many
others has a number of quirks, one of them is that instead of having same sized sectors, it has different
sized sectors at different addresses, so we need a list of these since the code to generate them
procedurally would be 10x longer than a simple table. Thus, you need the data structure
"sector_addresses" in the DAT section below:

 ' 19 sectors in 8MB FLASH
 sector_addresses long $00000 ' 64K sector 0
 long $10000 ' 64K sector 1
 long $20000 ' 64K sector 2
 long $30000 ' 64K sector 3
 long $40000 ' 64K sector 4
 long $50000 ' 64K sector 5
 long $60000 ' 64K sector 6
 long $70000 ' 64K sector 7
 long $80000 ' 64K sector 8
 long $90000 ' 64K sector 9
 long $A0000 ' 64K sector 10
 long $B0000 ' 64K sector 11
 long $C0000 ' 64K sector 12
 long $D0000 ' 64K sector 13
 long $E0000 ' 64K sector 14

 long $F0000 ' 16K sector 15
 long $F4000 ' 8K sector 16

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 71 of 95

 long $F6000 ' 8K sector 17

 long $F8000 ' 32K sector 18

As usual, we have infinite paper since this is an eBook, so without further ado, below is the complete
FLASH API (note you will notice its very C/C++ looking, this is because I ported this library from another
C/C++ based design I developed for another processor).

' ///
' FLASH MEMORY API (ported from my C/C++ libraries note syntax leftovers!)
' ///

PUB Flash_Read_Status | _spi_data
{{
Reads the FLASH memory status register

PARMS: None.
RETURNS: status register value
}}

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, READ_STATUS, $FF)

 ' now read data returned
 _spi_data := SPI_Write_Read(8, $FF, $FF)

 '// disable SPI interface
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 ' return results
 return (_spi_data)

' // end Flash_Read_Status

' ///

PUB Flash_Write_Status (status) | _spi_data
{{
Writes the FLASH memory status register

PARMS:

status - value to update the status register with

RETURNS: None.
}}

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_STATUS, $FF)
 _spi_data := SPI_Write_Read(8, status, $FF)

 '// disable SPI interface
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 ' return success for now
 return (1)

' // end Flash_Write_Status

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 72 of 95

' ///

PUB Flash_Open | _index, _spi_data, _flash_start_addr
{{

This functions "opens" the FLASH memory simply by unprotecting all sectors starting at
address 0

PARMS: None.
RETURNS: None.

}}

 ' use global unprotect to unprotect entire chip at once, write "0" to bits 2,3,4,5
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)
 SPI_Select_Channel(0)

 Flash_Write_Status (Flash_Read_Status & %11_0000_11)
 Delay_MS(10)
 ' // return success always
 return(1)

{

 ' this code is used to iterate thru all sectors manually and have more control
 ' iterate thru all sectors and unprotect them
 repeat _index from 0 to NUM_FLASH_ROM_SECTORS-1

 '// STEP 1: enable writing to chip ///////////////////////////////////////
 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)

 '// disable SPI interface
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 Delay_MS(10)

 '// unprotect sector ///////////////////////////////////

 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, UNPROTECT_SECTOR, $FF)

 '// get sector address
 _flash_start_addr := sector_addresses[_index]

 '// write sector address, there are only a handful of sectors since each is 4-64K
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 16, $FF)
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 8, $FF)
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 0, $FF)

 '// disable SPI interface
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 73 of 95

 ' delay 10
 Delay_MS(10)

 ' // end for index

 ' // return success always
 return(1)
 }

' // end Flash_Open

' ///

PUB Flash_Close | _index, _spi_data, _flash_start_addr
{{
This function "closes" the FLASH by protecting all of the sectors on the flash chip.

PARMS: None.
RETURNS: None.

}}

 '// protecting the sectors seems to have a side effect, we are not considering???
 '// we need to read the data sheet more, for now, just return, and don't protect
 '// all the sectors, this is overkill anyway for now ...
 return(1)

' // end Flash_Close

' ///

PUB Flash_Erase_Chip(wait) | _spi_data
{{
This function erases the entire chip. The erase command takes a considerable amount
of time, thus this function issues the command and either returns immediately or waits.
To determine if the erase is complete the function polls the status register bit 0
which is the RDY/BSY bit, 0=device is idle, 1=device is busy

PARMS: wait - boolean, 1=wait for erasure to complete, 0-return immediately.

RETURNS: None.

}}
 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)

 '// disable SPI interface

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, CHIP_ERASE, $FF)

 '// disable SPI interface

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 74 of 95

 ' test if user requested wait for completion?
 if (wait)
 repeat
 ' erase operation still ongoing?
 if ((Flash_Read_Status & $01)==0)
 return (1)

 '// return success for now
 return(1)

' ///

PUB Flash_Erase(block) | _index, _spi_data, _flash_start_addr
{{
This function erases a block of FLASH memory.

PARMS:

block - block address to erase.

RETURNS: None.

}}
 '// STEP 1: enable writing to chip again
///
 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)

 '// disable SPI interface

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)
 Delay_MS(100)

 '// STEP 2: erase 4K block of chip
 _flash_start_addr := FLASH_BLOCK_TO_ADDR (block)

 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, BLOCK_ERASE4, $FF)

 '// write block address, there are only a handful of blocks since each is 4-64K
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 16, $FF)
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 8, $FF)
 _spi_data := SPI_Write_Read(8, _flash_start_addr >> 0, $FF)

 '// disable SPI interface
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 '// erasure takes a long time...
 Delay_MS(500)

 '// return success for now
 return(1)

' // end Flash_Erase

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 75 of 95

' ///

PUB Flash_Write(flash_start_addr, buffer_ptr, num_bytes) | _index, _spi_data
{{
This function writes num_bytes bytes to the FLASH memory at flash_start_addr from the sent
buffer_ptr.

It uses the byte/page write function. Although, there is a "sequential" byte write function
available on the AT26DF081A the new rev of the Atel chips (AT25xxxx series) coming out in
2011 have replaced the sequential write with another function :(, thus we simply have to
check for page boundaries and re-issue another page write every 256 bytes.

PARMS:

flash_start_addr - starting address in the FLASH memory to write the data at.
buffer_ptr - local byte pointer to Prop memory holding data to write to FLASH memory.
num_bytes - number of bytes to write to FLASH from source buffer_ptr.

}}

 '// STEP 1: enable writing to the chip again
 '// enable SPI interface

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)

 '// disable SPI interface

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 '// STEP 2: write buffer to address in flash //////////////////

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)

 '// initiate byte/page program command
 _spi_data := SPI_Write_Read(8, BYTE_PROGRAM, $FF)

 '// write starting address byte by byte, MSB first...
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 16, $FF)
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 8, $FF)
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 0, $FF)

 '// write first byte of
 _spi_data := SPI_Write_Read(8, byte [buffer_ptr][0], $FF)

 _index := 1

 '// write remaining bytes
 repeat until (_index => num_bytes)

 ' now test if we are on a page boundary, if so finish page, and start new page
 if (((flash_start_addr + _index) // 256) == 0)
 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 ' replace this with polling...
 Delay_MS(10)

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)
 _spi_data := SPI_Write_Read(8, WRITE_ENABLE, $FF)

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 76 of 95

 SPI_Select_Channel(0)

 SPI_Select_Channel(SPI_CHAN_FLASH)

 '// re-issue byte/page program command
 _spi_data := SPI_Write_Read(8,BYTE_PROGRAM,$FF)

 '// write starting address byte by byte, MSB first...
 _spi_data := SPI_Write_Read(8, (flash_start_addr + _index) >> 16, $FF)
 _spi_data := SPI_Write_Read(8, (flash_start_addr + _index) >> 8, $FF)
 _spi_data := SPI_Write_Read(8, (flash_start_addr + _index) >> 0, $FF)

 ' end if

 '// write the next byte of data
 _spi_data := SPI_Write_Read(8, byte [buffer_ptr][_index], $FF)

 _index++

 ' // end for index

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 ' write final bytes left in internal buffer, replace this with polling...
 Delay_MS(10)

 '// disable SPI interface

 '// return success
 return(1)

' // end Flash_Write

' ///

PUB Flash_Read(flash_start_addr, buffer_ptr, num_bytes) | _index, _spi_data
{{
This function reads num_bytes from the FLASH memory starting at memory location
flash_start_addr and stores the data in
buffer_ptr.

PARMS:

flash_start_addr - starting address in FLASH memory to read data from.
buffer_ptr - local Prop byte pointer to store the read data at.
num_bytes - the number of bytes to read from the FLASH memory.

RETURNS: None.
}}

 '// set CS to SPI select channel 3 (FLASH)
 SPI_Select_Channel(SPI_CHAN_FLASH)

 '// initiate read command
 _spi_data := SPI_Write_Read(8, READ_DATA, $FF)

 '// write starting address byte by byte, MSB first...
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 16, $FF)
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 8, $FF)
 _spi_data := SPI_Write_Read(8, flash_start_addr >> 0, $FF)

 '// now read data
 repeat _index from 0 to num_bytes-1

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 77 of 95

 byte [buffer_ptr][_index] := SPI_Write_Read(8, $00, $FF)

 ' // end for index

 '// disable SPI interface

 '// set CS to SPI select channel 0 (null)
 SPI_Select_Channel(0)

 '// return success
 return(1)

' // end Flash_Read

' ///

'//
' FLASH MACROS //
'//

PUB FLASH_ADDR_TO_BLOCK(n)
 n := (n >> 12)

' ///

PUB FLASH_BLOCK_TO_ADDR(n)
 n := (n << 12)

' ///

The API itself is heavily commented and in most cases there are only a few lines of code that perform the
same logic over and over just as the other APIs we have seen. The functions build the command word
up, send the bytes over the SPI bus, and exit. That’s about all there is to the FLASH system; remember
you will have to manually include the source, constants and data structures from this demo to use the
FLASH API in your applications.

In closing, the idea of the FLASH in the C3 is of course to store data, program code, boot operating
systems, data logging and much more. The FLASH chip is always with the C3 (unlike the SD card that can
be removed), so it’s a great feature which I will leave to you to figure out novel uses.

3.3.12 SD Card Demo
The SD card is one of the most amazing technologies available today. Cards with over 64 GB are
available with access speeds in the hundreds of megabytes per second. All that technology comes at a
price and that’s the complexity of the software to access the cards. Surprisingly, the hardware interfaces
are trivial. SD cards use either a serial SPI interface or a parallel 4-bit interface, each no more complex
than a few signals and a couple pull-up resistors! The software on the other hand is daunting and not
something you want to have to write yourself. If you are a thrill seeker and want to write your own driver
from scratch you will have a lot of work to do. First, SD cards have no file system; they are raw devices
consisting of a number of sectors (each sector usually 512 bytes each). This way, any client driver can
access them as it wishes and the SD card is not locked into any specific file system or format.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 78 of 95

In fact, this is a very misunderstood aspect of SD cards. Many people think there is a file system on the
SD card that is native. There is not, we simply write data to the sectors using conventions that map into
FAT16, FAT32, NTFS, Ext2, Ext3, etc. So, to write a complete SD card file system you need the following
layers:

 SPI driver to send and receive bytes to the SD card.
 A low-level driver to communicate with the SD card and access sectors; read, write, erase, using

SD card protocol.
 A mid-level driver that can access any sector and read or write it. This is the basis for any

modern file system.
 A high-level file system driver that formats the SD card by writing to the sectors and constructing

a file system that mimics the standard file systems found on PCs; FAT16, FAT32, Ext2, etc.
 A higher-level API that allows you to create files, read, write, format, create directories and so

forth.

If this sounds like a lot of work—it is! More or less, you are talking about a complete file system from the
ground up like DOS. Alas, SD card drivers are far and few between on many microcontrollers including
the Propeller. Considering this, the SD card support in the C3 is based on the simplest interface for SD
cards: the SPI interface. This allows the easiest porting of drivers to the C3 from other authors.
Currently, there are a couple SD card drivers for the Propeller chip that I know of and these have actually
been ported to the C3 by other coders. The problem with any other SD card driver is that most assume a
simple single IO pin to assert or de-assert the chip select on the SD card. However, the C3 has an SPI
bus decoder that we need to call a function to select the correct SPI device (SD card in this case). Thus,
these other Propeller SD card drivers need a little hacking to add the few lines of code to make the chip
select logic work on the C3 properly, which other open-source coders have done. You can find these
drivers and other applications in the FTP site here:

PropC3 \ Apps \ *.*

However, to make things easy I have written one as well to get you started that is 100% Spin based, so
you can follow along. The SD card demo is different from any of the other demos in that it doesn’t use
the same template as the other demos. It is such a complex program that I made it from scratch along
with the driver which is named c3_sd_drv_010.spin. This is the only external driver I made for the C3. All
the other driver APIs are simple enough that I prefer you copy source code and build your own from a
few lines of code. But, the SD card is a monster and needs a driver. So, for any SD card stuff you need to
include the driver c3_sd_drv_010.spin which is found here on the FTP site:

PropC3 \ Sources \ c3_sd_drv_010.spin

The driver is heavily commented and has built in documentation like a small manual or book. Also, the
Hardware section on the SD card interface in Section 2.13 has a number of document files you should
read up on about SD cards protocol, FAT file systems and so forth. Moving on, I use my driver to create
the demo for this part of the manual. The demo’s name is c3_sd_demo_010.spin and it too is located on
the FTP site here:

 PropC3 \ Sources \ c3_sd_demo_010.spin

As I said, the driver is documented internally, so please read that, but one thing you will notice is that
there are video terminal functions in it? This is for debugging purposes; when you don’t need them, you
can comment out all mention of them and pull the included sub-object. But, for now, don’t worry about
it; just use the driver and the demo to get started. So, let’s take a look at the demo itself. Go ahead and
build the demo program, download the C3 and run it. You should see something like that shown in Figure
3.14 below (press any key after the intro screen).

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 79 of 95

Figure 3.14 — SD card demo main menu.

The main menu has a number of advanced options, but the ones we are interested in immediately are:

 (1) Mounts/Re-mounts the SD card.

 (5) Prints a directory of files on the SD card.

 (6) Loads and prints a file to the screen.

At this point, we have a little problem: no SD card is inserted. Therefore, if you have a microSD card you
need to format it to FAT16 (that’s all my driver understands) then go ahead and copy a few text files on
the card. And make sure that the filenames are in 8.3 format—this isn’t Windows 7, we have to keep it
simple!

Once you have an SD card formatted with files on it, go ahead and insert it into the C3, facing up, insert
it carefully—do not force it—just give it a push and it should click in. If it seems to bind, just pull it back a
bit and re-try. The mechanical interface is brand new and needs to get worked in a bit.

! The SD card mechanical interface is spring loaded. It is called a “push-push” interface because you push the
SD card in to insert it until you feel it lock in place, then you push it again until it unlocks at which time you can pull
it out. Do not force the card out by pulling on it.

Now that the SD card is in, we are ready to mount it. This term probably doesn’t mean much if you are
a Windows person and have never worked with Unix or Linux. But, mounting simply means that a file
system is mounted on a system and the system becomes aware of it and can access it. In our case, this
means that the driver will try to access the SD card, initialize it, and scan for some FAT16 markers to
make sure that there is a FAT16 file system with a boot sector and partition. So here are the main menu
steps at this point to see what’s on the SD card:

 Select option (1) to mount the card. If it can’t mount the card try again, and or eject the card

and re-insert it. To eject the SD card, push it again—do NOT pull it!

 Select option (5) to display the directory of files, you should see all your files on the card.

 Select option (6) to load a file and display it to the screen with a very crude screen print.

And that’s it! The other options are for advanced users that are more familiar with FAT file system
mechanics, they print out the master boot record, partition entry 0, and the partition boot record. All of
those are described in detail in the HYDRA SD MAX manual referred to in the Hardware section 2.13 on
the SD card.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 80 of 95

Now that we have seen the demo, let’s take a brief look at the API function listing and review that.

SD Card API Listing

The API for the SD card is documented in the driver itself, so please refer to that as well as the demo
program as a model of getting an SD application up and running. The SD driver more or less has to
handle a complete FAT16 file system which looks something like the illustration shown in Figure 3.14.

Figure 3.15 — FAT16 file system diagram.

As you can see, the FAT16 system mapped into the SD card is complex and has a lot of sections in there.
The FAT file system is beyond the scope of this manual, but my other booklet on the HYDRA SD MAX
included in the C3 FTP site gives a really good explanation of it all. You can find it here:

PropC3 \ Docs \ HYDRASDMAX \ *.*

The driver developed for the C3 is a simple port of the HYDRA SD MAX driver and took less than 5
minutes to port (simply had to change chip select logic to use the C3 SPI channel selection function).
Now, let’s take a look at the driver API function list (I have put them into a source code block since there
are so many, and its easier to see them at a glance this way):

{{
*** Initialization Functions ***

 PUB Start (buffer_ptrs) - Initializes the driver and writes the callers pointer storage
 space with local disk buffer addresses

*** SPI Functions ***

 PUB SPI_Init(mode) - Initializes the hardware SPI interface I/O pins from propeller
 to card.

 PUB SPI_Send_Recv_Byte(spi_data8) - Sends a single byte to SPI interface and receives
 one at the same time.

 PUB SPI_Read_Byte - Reads the SPI buffer, writes a dummy values of $FF.

 PUB SPI_Write_Byte(spi_data8) - Writes a byte to the SPI interface.

*** SD Functions ***

 PUB SD_Mount - Mounts the SD card by initializing and placing it into SPI mode.

 PUB SD_Unmount - Unmounts the previously mounted SD card.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 81 of 95

 PUB SD_Send_Command(command8, address32) - Sends a generic command to the SD card.

 PUB SD_Read_Sector(sector32, sectorbuffer16) - Reads a sector from the SD card.

 PUB SD_Write_Sector(sector32, sectorbuffer16) - Writes a sector to the SD card.

 PUB SD_Wait_Write_Complete - Internal function used in the write command to make sure
 the flash has been updated.

 PUB SD_Print_Sector(sector32, sect_ptr, start_byte, end_byte, base, print_addr)
 – diagnostic function that prints the contents of a sector to terminal.

 PUB SD_Read_WP - reads the single bit "write protect" signal on the SD card mechanical

 PUB SD_Read_CD - reads the single bit "card inserted" signal on the SD card mechanical

*** FAT16 Functions ***

Lower level functions (initialization of FAT16 system)

 PUB FAT_Read_MBR(mbr_ptr) - Reads the MBR (Master Boot Record) from the SD card, sector 0.

 PUB FAT_Load_Partition_Entry(partition, mbr_ptr) - Loads the requested 16-byte partition
 entry from the loaded MBR.

 PUB FAT_Print_Partition_Entry(partition, mbr_ptr) - Pretty prints the partition entry to
 terminal.

 PUB FAT_Load_Partition_Boot_Rec(pbr_ptr) - Loads the partition boot record referred to by
 loaded partition entry.

 PUB FAT_Print_Partition_Boot_Rec - Pretty prints the partition boot record (aka volume
 record or simply boot record).

*** High level functions (general file I/O) ***

 PUB FAT_Print_Directory - Print the root file directory to the terminal (like DOS DIR
 command).

 PUB FAT_File_Open(filename_ptr, file_handle_ptr) - Opens filename and fills in the sent
 file handle structure.

 PUB FAT_File_Close(file_handle_ptr) - Closes the file handle.

 PUB FAT_File_Read(file_handle_ptr, buffer_ptr, count) - Reads bytes from file referred to
 by the sent file handle.

 PUB FAT_File_Seek(file_handle_ptr, count, mode) - Seeks file pointer to a specific location
 in file for reading.

*** Utility Functions ***

 PUB To_ASCII(inchar, replace_char) - Used to map non-printable characters to printable.

 PUB itoa(value, sptr) - Converts an integer to an NULL terminated ASCII string.

 PUB ToUpper(char) - Converts lower case ASCII to upper case.

 PUB Strncomp(string_ptr1, string_ptr2, length) - Compares strings.

 PUB _Min(a,b) - returns the min.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 82 of 95

 PUB _Max(a,b) - returns the max.

*** Exported Object Functions ***

 PUB tvt_bin(value, digits) - Prints a binary number to the terminal with specific number
 of digits.

 PUB tvt_out(char) - Outputs a single character to terminal.

 PUB tvt_dec(value) - Prints a number in decimal format to terminal.

 PUB tvt_hex(value, digits) - Prints a hex number to the terminal with specific number
 of digits.

 PUB tvt_setx(new_x) - Sets the x cursor position on terminal.

 PUB tvt_sety(new_y) - Sets the y cursor position on terminal.

 PUB tvt_getx - Gets the current x cursor position in terminal.

 PUB tvt_gety - Gets the current y cursor position in terminal.

 PUB tvt_pstring(string_ptr) - Prints a NULL terminated string to the terminal.

 PUB tvt_erase - Erases completely the character under the current cursor position.
}}

Comments on the API Functions

 Make sure to refer to the return value from each function; the functions have non-homogeneous

return codes. For example, in some cases 0 is an error, in some cases it means success.

 Many of the driver functions have sprinkled terminal print statements that are left in them in case
you want to output more debug information. If you don't want any NTSC screen printing support
simply remove all references to term.* calls in the code and don't include the terminal driver.

 The functions are written for maximum clarity, not speed. I suggest re-writing everything in ASM,
but these Spin versions are reasonably easy to follow, so you can learn the ropes of SPI, SD,
FAT16 drivers.

 The FAT16 driver layer is minimal and doesn't support writing to files, and only supports the root
directory and no folders. But, that should suffice for 99% of applications. Adding file writing isn’t
hard, but it does mean a lot of work allocating clusters and setting up links. These operations are
easily done using the PC to create the file. However, if you need data logging, obviously you will
need to create and write a file, so you will have to add this function yourself.

 Everything has been tested, but don't assume everything is working perfectly. If something
doesn't work as expected test it thoroughly, but it could very well be the driver. They were only
tested functionally, but not in any large application, so they are not threshed out and probably
have bugs here and there. But, nonetheless they are good for tutorial use and to get you started,
so you don’t have to write your own!

 Remember, always format your SD cards FAT16, and make sure you do not use folders and all
your file names are ALWAYS 8.3. Also, it’s suggested that you use 1–2 G SD cards, these seem to
work the best.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 83 of 95

There are a lot of microSD card manufacturers out there, and driver authors sometimes do not follow the
SD card specification 100%. This causes problems with various cards. Open source authors tend to do things on
a budget and that means that they don’t thoroughly test things with a lot of different hardware. In the case of SD
cards, a professional piece of software sold would require testing that included at least 20–30 SD cards from
various manufacturers. I personally tried my driver on 10 SD cards, and it works on them all. However, I have tried
other drivers from other authors that will only work on Kingston or Sandisk media for example. So, point is, it can’t
hurt to buy a couple SD cards. I suggest Kingston and Sandisk or other name brands. Try to buy online as well;
stores tend to charge 3–5 times what you should pay. Some of my favorite sources are Newegg.com and
Dz tech.com for really low prices.

3.4 Serial Version Demos (Using USB UART)
All the demos in the previous section used the C3’s local PS/2 keyboard as the input device. For fun, I
ported all of the demos to use the Parallax Serial Terminal program instead. This is of course redundant
and not necessary, but a lot of customers really like talking to the Propeller dev boards via a serial
connection and not having to use two keyboards for input. That alone is enough motivation to make the
ports. That said, this section will be very short and only give the names of the demos and any other
details that might be of interest. The API listing, logic, and other technical details are all the same as in
the previous section, so look there if you have skimmed to this section and are jumping around the
manual.

3.4.1 Setting up for the Demos
Now, for the tricky part. The Propeller Tool IDE requires the use of the USB serial port for programming,
so obviously you can’t use the Propeller Serial Terminal and the Propeller Tool IDE at the same time!
Therefore, with the Propeller Serial tool, or any serial terminal, you need to disconnect it first from the
serial port then program the C3, then re-connect it. This is a pain, but only a couple mouse clicks.

If you aren’t using the Parallax Serial Terminal then you will have to make sure to disconnect your
terminal program before making the connection to the C3 with the Propeller Tool, otherwise it will
complain. The Parallax Serial Terminal is included with the Propeller Tool software v1.2.7 (launch from
the Start menu) and it can be downloaded from the Parallax main site at:

http://www.parallax.com/propeller

Click on the Propeller Downloads link and find the latest Parallax Serial Terminal.

Whether you use the Parallax tool or another one (ZOC, Putty, etc.) you should set your serial terminal to
38,400-N81:

Baud: 38400
Parity Bit: N
Data Bits: 8
Stop Bits: 1
Echo: Local echo off (check box on the Parallax Serial Terminal next to the
 <Pref’s> button).

Once the serial tool is running, put it next to the Propeller Tool IDE and run them side by side, so you
can quickly enable/disable the serial tool to release and engage it from the serial port as needed. The
process for each demo will be the following:

Step 1. Load demo top level file into Propeller Tool. All the demos have nearly identical names to
the stand alone version, but with “sterm” appended to the file name. It stands for “serial
terminal” version.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 84 of 95

Step 2. Build the program and download it to the C3 by pressing F11 or selecting the appropriate
menu option with the mouse.

Step 3. Re-connect the serial terminal to the correct COM port at 38400 N81.
Step 4. Hit the RESET button on the C3 to re-establish connection with the serial terminal.
Step 5. Play with the demo.

 All of the demos will boot the C3’s NTSC video hardware and display the C3 logo screen. It’s not necessary
to plug in an NTSC monitor, but can’t hurt, so you can confirm the C3 is running perfectly.

The demos will print to the serial terminal as they did the NTSC screen in the previous section. The only
difference is the editing might be slightly different depending on your terminal software.

3.4.2 Port A/B Demo
The file name for the serial version of the port IO demo is c3_port_io_demo_sterm_010.spin, it’s
located on the FTP site here:

PropC3 \ Sources \ c3_port_io_demo_sterm_010.spin

3.4.3 NES Gamepad Demo
The serial version of the NES gamepad demo is c3_nes_gamepad_demo_sterm_010.spin, it’s located on
the FTP site here:

PropC3 \ Sources \ c3_nes_gamepad_demo_sterm_010.spin

3.4.4 Servo Port Demo
The file name for the serial version of the servo demo is c3_servo_demo_sterm_010.spin, it’s
located on the FTP site here:

PropC3 \ Sources \ c3_servo_demo_sterm_010.spin

3.4.5 SRAM Demo
The file name for the serial version of the SRAM demo is c3_sram_demo_sterm_010.spin, it’s located
on the FTP site here:

PropC3 \ Sources \ c3_sram_demo_sterm_010.spin

3.4.6 A/D Demo
The serial version of the analog to digital demo is c3_analog_digital_demo_sterm_010.spin, it’s
located on the FTP site here:

PropC3 \ Sources \ c3_analog_digital_demo_sterm_010.spin

3.4.7 A/D Plus SRAM Demo
The serial version of the hybrid A/D plus SRAM demo is c3_ad_sram_demo_sterm_010.spin, it’s
located on the FTP site here:

PropC3 \ Sources \ c3_ad_sram_demo_sterm_010.spin

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 85 of 95

3.4.8 FLASH Memory Demo
The file name for the serial version of the FLASH demo is c3_flash_demo_sterm_010.spin, it’s
located on the FTP site here:

PropC3 \ Sources \ c3_flash_demo_sterm_010.spin

4 Porting Applications from other Boards to C3
The Propeller chip was released in 2006 with only two application boards: the HYDRA and the Propeller
Demo Board. Since then, dozens of new Propeller-based boards have been created. The good news is
that most rely on the Propeller chip itself for 90% of the functionality, so the same bus configurations, IO
pins and drivers are used for the majority of these designs. Therefore, in this section, I am going to give
you some basic tips on porting applications from other boards to the C3. Please refer to the Hardware
portion of this manual for specifics on pin outs and electrical designs.

4.1 Propeller Chip, Reset, and Clocking
The Propeller chip on the C3 uses an external crystal like most designs. The crystal itself is socketed, so
you change it. Currently the popular speeds are 5, 6.25, and 10 MHz. The 5 and 10 MHz are used for
normal clocking with PLL multipliers of 16 and 8 respectively (resulting in an 80 MHz system clock). The
6.25 MHz crystal is used to over-clock the Propeller to 6.25 MHz x16 PLL = 100 MHz. So, if you are
porting a piece of software from another platform to the C3, make sure you either adjust the clock rate
lines in the code or change the crystal. The clock rate is usually found at the very top of the main source
file.

The reset system on the C3 is also very similar to most designs. The only interesting thing is that an
external device can reset the Propeller via the expansion IO headers by pulling the RESn line low
(System/Power header) and releasing it again.

4.2 Porting VGA Drivers
The VGA on the C3 uses IO pins P23..P16. This is one of the most common pin groups used on Propeller
products for VGA. If you have a board that is using a different pin group and you want to port a VGA
driver then you need to find the code that controls the pin group and make sure to change it P23..P16.
Additionally, make sure you enable the IOs to outputs for the same pins, P23..P16!

The second thing you need to do in all cases is add a couple lines of code that enable the VGA buffer, so
the signals from the Propeller make it to the VGA header. This is accomplished with the following code
fragment:

 DIRA[STATUS_LED_BUS_MUX] := 1 ' set to output
 OUTA[STATUS_LED_BUS_MUX] := 0 ' turn on buffer

4.3 Porting Composite Video Drivers
Composite video is a bit tricky since it’s a more complex setup and you really have to know what you’re
doing. But, similar to porting VGA drivers you need to locate in the driver where the pin group is set to
and change it to the C3’s pin group for video which is P15..P8, the second group. But, there is a catch—
the composite video uses only 4 pins for the DAC, so you have to tell it which nibble and set baseband or
broadcast as well. So, first, you need to adjust the nibble to the upper nibble bits P15…P12. And you
need to adjust any bitmasks that are used by the driver, so they look like %1110_0000. Also make sure
you set P15..P13 as outputs in the driver. Finally, note that P12 is actually not used by video on the C3, it
controls the VGA buffer. This is acceptable since the last bit in composite video setups is used for aural
signals for broadcast which we don’t use.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 86 of 95

So, in review to port a composite video driver you must:

 Change the IO pins to P15..P13.

 Set them to output.

 Search the driver and make sure the pin group is set to the 2nd pin group (they are counted in
8’s, 0 based, so the C3 is pin group 1 numerically, pin group 2 physically).

 Find any bitmasks and make sure they refer to the proper bits (upper nibble) or if there is a
32-bit bitmask make sure it looks like:

%0000_0000_0000_0000_1110_0000_0000_0000

……or the inverse as appropriate.

 Find the baseband / broadcast setting and make sure you have it set for upper nibble baseband.

4.4 Porting Audio Drivers
Audio on the C3 uses a single IO pin (AUDIO_MONO at P24) standard PWM setup with a low-pass
integrator filter with 3 db point at 1 kHz. The majority of Propeller designs use this kind of setup. The
only thing that you might have to do to port another sound driver is change the pin assignment and if
there is stereo output, disable the other pin, or mix in software first and then send the sum to the single
mono output on the C3.

4.5 Porting PS/2 Drivers
The C3 uses a 2-signal PS/2 interface comprised of PS/2 data (P26) and clock (P27), so all you need to
do is change your driver to these pins and make sure to use a 2-pin driver not the 4-pin driver.

4.6 Porting SD Card Drivers
All SD card drivers use an SPI driver of some sort, so the first step is to make changes to the MISO
(P11), MOSI (P9), and SCK (P11) signals to match that of the C3. Then you must find the code that
asserts the chip select (CS line) on the SD card and change it from a simple IO high/low to a call to the
SPI system channel select function SPI_Select_Channel (..) covered previously. Also, make sure to
include the SPI bus functions and to initialize the SPI bus.

4.7 Supporting NES Controllers for Games
The C3 obviously has no NES ports on it, so the only way to support NES controllers is to buy (or make)
an NES adapter that plugs into the expansion header port and is powered from the port as well as
signaled from it. The NES drivers usually consist of only three signals: clock, data, and latch. You must
make sure to assign these properly to wherever your particular NES arrangement places them in IO
space.

4.8 USB Serial Considerations
The C3 uses the FTDI 232R USB to serial UART which more or less does everything. As with other
Propeller designs the DTR signal is connected to reset via a capacitor and a NPN transistor that grounds
(resets) the system if it senses a DTR pulse.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 87 of 95

4.9 EEPROM Support
The C3 currently ships with a 64 KB EEPROM. If you have an application that requires a 128 KB EEPROM,
you are out of luck. But, that’s what the 1 MB FLASH is for. Of course, if you really want 128 KB, you can
always de-solder the EEPROM on the C3 – I suggest using Chip Quick™ if you are hell-bent on upgrading
to a larger EEPROM and want to remove the current one (or a good hot air de-soldering gun).

4.10 Power Supplies
The C3 has hearty supplies that can source 1.5 A. However, when sourcing this much current the
regulators will get very hot and burn your fingers, so don’t touch the heat sink. The other detail about
the C3 is it can be USB powered as long as you don’t draw more than 500 mA.

4.11 Porting HYDRA Applications
The HYDRA and the C3 share many of the same IO mappings and features while some features are
radically different and others are non-existent. In this section, we will review some of the differences to
help you port applications you (or others) have written for the HYDRA to the C3 with respect to each sub-
system. Below is a quick reference list you can use as you port an application to help you quickly identify
the differences between systems. This conversion list is from HYDRA to C3, thus, I will only mention key
systems that are in common.

Figure 4.1 — The HYDRA Game Console Rev A

4.11.1 Propeller Chip, Reset, EEPROM, and Clock
The Propeller chip and reset are identical on both systems. However, the clock crystal on the HYDRA is at
10 Mhz, while the C3 is at 5 MHz. Thus, you need to make sure to change the clock frequency setting on
HYDRA ports (or use a 10 MHz crystal in the C3). On the EEPROM front, the HYDRA has a 128 KB
EEPROM while the C3 has a 64 KB EEPROM, so any apps that require the larger 128 KB will have
problems if they use the other 64K.

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 88 of 95

4.11.2 Composite Video
The HYDRA actually has all four video lines connected to the video DAC, but 99% of all applications only
use the standard baseband video lower three lines. Other than that the C3 has the video DAC on a
different set of IOs as shown below:

HYDRA Video DAC: P24..P27 (lower nibble of pin group 3).
C3 Video DAC: P12..P14,P151 (upper nibble of pin group 1).

Note 1: P15 used for STATUS_LED_BUS_MUX signal (controls VGA enable and status LED).

4.11.3 Audio
Audio is usually used with the composite video signal, but it can be a stand-alone signal or maybe used
with VGA. In either case, both audio signals on the HYDRA and C3 are designed to be PWM generated
and work well with a 75 terminating resistance like a TV set amplifier. Both use a low-pass integrating
filter and an AC coupling capacitor to the audio RCA output. And both have the same 3 db cutoff
frequency. The only difference between the HYDRA and C3 are the I/O pins as shown below:

HYDRA Audio Pin: P7
C3 Audio Pin: P24

4.11.4 VGA
Luckily there is less flexibility with VGA than there is with the NTSC DAC since VGA has no upper/lower
nibble select, no baseband or broadcast. VGA simply works on one of the 4 pin groups; 0..3, simple as
that. The good news is both the HYDRA and C3 use P16..P23 for VGA! Additionally, both systems have a
VGA buffer. However, on the HYDRA it’s manually controlled with a switch, but on the C3, you control it
with the STATUS_LED_BUS_MUX signal by asserting it low. So, to port any VGA driver from the
HYDRA to the C3, just assert that signal, the VGA pins are the same.

4.11.5 PS/2 Port(s)
Here’s where the HYDRA and the C3 diverge quite a bit. The HYDRA uses 4-pin PS/2 ports and has two
of them while the C3 only has a single PS/2 port and uses only 2 signals per port. Thus, any game or
application that uses the PS/2 ports on the HYDRA must be modified since the C3 can only support
keyboard or mouse not both at the same time. Moreover, you need to use a driver that works with 2-
signal PS/2 ports like the reference drivers keyboard_010.spin or mouse_010.spin which can be
found on the FTP site here:

PropC3 \ Sources \ keyboard_010.spin
PropC3 \ Sources \ mouse_010.spin

Therefore, you don’t really need to port PS/2 drivers from the HYDRA to C3, you just replace the driver
with the above or similar and then hook it up to PS/2 pins P26, P27.

4.11.6 HYDRA Game Ports
I have taken the time to port a number of HYDRA games and demos that shipped with the HYDRA itself
to the C3. You can find them in the FTP site here:

PropC3 \ Sources \ Games \ HYDRA_Ports \ *.*

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 89 of 95

Figure 4.2 — The Propeller Demo Board Rev G

4.12 Porting Parallax Propeller Demo Board Applications
The Demo Board and the C3 share many of the same IO mappings and features while some features are
radically different and others are non-existent. In this section, we will review some of the differences to
help you port applications you might have written for the demo board to the C3 with respect to each sub-
system. Below is a quick reference list you can use as you port an application to help you quickly identify
the differences between systems. This conversion list is from demo board to C3, thus, I will only mention
key systems that are in common.

4.12.1 Propeller Chip, Reset, EEPROM and Clock
The Propeller chip, reset, and clock crystal are identical on both systems. However, the C3 has a 64 KB
EEPROM and the Demo Board EEPROM only has 32 KB, but this is fine since the C3 has more memory,
so all EEPROM applications will work without modification.

4.12.2 Composite Video
The Demo Board (like the HYDRA) actually has all four video lines connected to the video DAC, but 99%
of all applications only use the standard baseband video lower three lines. The good news is the Demo
Board and C3 use the same composite video DAC lines as shown below:

Demo Board Video DAC: P12..P15 (upper nibble of pin group 1).
C3 Video DAC: P12..P14,P151 (upper nibble of pin group 1).

Note 1: P15 used for STATUS_LED_BUS_MUX signal (controls VGA enable and status LED).

4.12.3 Audio
Audio is usually used with the composite video signal, but it can be a stand-alone signal or maybe used
with VGA. In either case, both audio signals on the Demo Board and C3 are designed to be PWM
generated, but the demo board is routed into an audio amplifier for listening through a set of
headphones while the C3 is designed to be output into a 75 terminating resistance like a TV set
amplifier. Both use a low-pass integrating filter and an AC coupling capacitor to the audio RCA output.
And both have the same 3 db cutoff frequency. However, the C3 will pass frequencies lower than the
Demo Board, so you can have really low bass signals pass. Finally, the Demo Board has 2 channels of
audio going to the amplifier, the C3 only has one. So, if you have a Demo Board audio application, the

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 90 of 95

driver can stay the same, but you need to disable one channel; only enable one and make sure it goes to
the C3 audio pin as shown below:

Demo Board Audio Pins: P10, P11
C3 Audio Pin: P24

4.12.4 VGA
Luckily there is less flexibility with VGA than there is with the NTSC DAC, since VGA has no upper/lower
nibble select, no baseband or broadcast. VGA simply works on one of the 4 pin groups; 0..3, simple as
that. The good news is both the Demo Board and C3 use P16..P23 for VGA! But, unlike the C3, the Demo
Board doesn’t multiplex the VGA signals to other IO pins (it does send them to LEDs though), so any
Demo Board VGA driver will work perfectly. The only thing you need to do is assert the
STATUS_LED_BUS_MUX signal on the C3 by setting it low to enable the C3’s VGA buffer.

4.12.5 PS/2 Port(s)
Here’s where the Demo Board and the C3 diverge quite a bit. The Demo Board uses 2-pin PS/2 ports and
has two of them while the C3 only has a single PS/2 port, but uses the same 2 signals. Thus, any game
or application that uses both PS/2 ports on the Demo Board needs to be modified since the C3 can only
support keyboard or mouse, but not both at the same time. Nonetheless, they both use the same driver
per PS/2 port, unless the Demo Board driver has a combined PS/2 mouse+keyboard driver. In that case
you have to completely disable one of the ports since the C3 physically only has a single PS/2 port. Either
way, both systems can use the same drivers: keyboard_010.spin and mouse_010.spin which can be
found on the FTP site here:

PropC3 \ Sources \ keyboard_010.spin
PropC3 \ Sources \ mouse_010.spin

Therefore, you don’t really need to port PS/2 drivers from the Demo Board to C3, you can just replace
the driver with the above or similar (if the driver is a combined keyboard and mouse) and then hook it up
to PS/2 pins P26, P27 on the C3. Note: the PS/2 labeled keyboard on the Demo Board uses P26, P27 as
well, so if an application on the Demo Board only uses the single PS/2 port it will work without change.

5 Summary
Hopefully this manual has got you off to a good start with the C3. The important thing to remember is
that at its core the C3 is a Propeller chip, but with all the peripherals it’s a complete computer. Hopefully
you and others find new and amazing uses for the C3 and the Propeller chip in this new configuration!
Good luck and make sure to check out the Parallax C3 FTP site, it’s constantly being updated as are the
Parallax C3 and Propeller forums with members just like you posting new projects, answering questions,
and exchanging ideas.

6 Appendix

In this section you will find a few convenient references for the Propeller C3: higher resolution schematics
to zoom in on, PCB gerbers, mechanical images, as well as IO assignment at a glance, and FTP site
structure.

Copyright © Parallax Inc. Unleashing the Propeller C3 v1.0 12/16/2010 Page 91 of 95

6.1 Propeller C3 System Schematic

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 92 of 95

6.2 PCB Mechanical Layout w/Dimensions

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 93 of 95

6.3 Gerber Images

Figure 6.1 — Top Copper

Figure 6.2 — Bottom Copper

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 94 of 95

6.4 IO Header Pin out Close-up

Copyright © Parallax Inc. 2010 Unleashing the Propeller C3 v1.0 12/16/2010 Page 95 of 95

6.5 FTP Site Layout

All the files for the C3 are located on the Parallax FTP server located here:

ftp:\\ftp.propeller-chip.com\PropC3

 The directory structure is shown below:

 PropC3\ - Root directory.
 Docs\ - Contains documents relating to the C3, datasheets, etc.
 Sources\ - Contains source code and examples from this manual.
 Games\ - Contains games that have been ported or originals.
 Apps\ - Contains applications, languages, and other apps for the C3.
 Designs\ - Contains designs for the C3 including schematics and gerbers.
 Tools\ - Contains tools and programs for the C3.
 Media\ - Contains any extra media for the C3 or videos, audio, etc.
 Goodies\ - Contains any goodies that are special.
 UPDATE_LOG.TXT – Changes to the FTP directory are logged here.

Be sure to check out the Games\ and Apps\ directories they contain all of the software written by other
authors, ports, etc. The Sources\ directory is the primary source for this manual and the tutorials, but
the Games\ and Apps\ have all the good stuff!

