

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Technical: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 1 of 17

Supplement and Errata for Propeller Manual v1.0
(#122-32000)
(Items added/changed/deleted are marked in blue.)

Supplemental Information

Page 23:
Table 1-3:

Table 0-1: Cog RAM Special Purpose Registers

Cog RAM Map Address Name Type Description
$1F0 PAR Read-Only1 Boot Parameter

$1F1 CNT Read-Only1 System Counter

$1F2 INA Read-Only1 Input States for P31 - P0

$1F3 INB Read-Only1 Input States for P63- P323

$1F4 OUTA Read/Write Output States for P31 - P0

$1F5 OUTB Read/Write Output States for P63 – P323

$1F6 DIRA Read/Write Direction States for P31 - P0

$1F7 DIRB Read/Write Direction States for P63 - P323

$1F8 CTRA Read/Write Counter A Control

$1F9 CTRB Read/Write Counter B Control

$1FA FRQA Read/Write Counter A Frequency

$1FB FRQB Read/Write Counter B Frequency

$1FC PHSA Read/Write2 Counter A Phase

$1FD PHSB Read/Write2 Counter B Phase

$1FE VCFG Read/Write Video Configuration

$1FF VSCL Read/Write Video Scale

Note 1: Only accessible as a source register (i.e. MOV Dest, Source).
Note 2: Only readable as a source register (i.e. MOV Dest, Source); read-modify-write not possible as

a destination register.
Note 3: Reserved for future use.

Page 28:

Modified last sentence of second paragraph in CLK Register section:

When possible, it is recommended to use Spin’s CLKSET command (page 183), since it
automatically updates all the above-mentioned locations with the proper information.

 Page 30:

Table 1-10 RCSLOW row:

0 0 1 RCSLOW ~20 kHz Internal Very low power. No external parts.
May range from 13 kHz to 33 kHz.

Page 136:
OBJ block of Blinker2.spin code:

OBJ
 LED[MAXLEDS] : "Output"

Page 165:
BYTE syntax should be the following:

VAR

 BYTE Symbol 〈[Count]〉
DAT

 〈Symbol〉 BYTE Data 〈[Count]〉
((PUB ┆ PRI))
 BYTE [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.BYTE 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2) or

is the existing name of the variable (Syntax 4).
• Count is an optional expression indicating the number of byte-sized elements for

Symbol (Syntax 1), or the number of byte-sized entries of Data (Syntax 2) to
store in a data table.

• Data is a constant expression or comma-separated list of constant expressions.
Quoted strings of characters are also allowed; they are treated as a comma-
separated list of characters.

• BaseAddress is an expression describing the address of main memory to read or
write. If Offset is omitted, BaseAddress is the actual address to operate on. If
Offset is specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate
on, or the offset from byte 0 of Symbol.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 2 of 17

New paragraphs at end of Byte Data Declaration (Syntax 2) section, page 167:

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData byte 64, $AA[8], 55

The above example declares a byte-aligned, byte-sized data table, called MyData,
consisting of the following ten values: 64, $AA, $AA, $AA, $AA, $AA, $AA, $AA,
$AA, 55. There were eight occurrences of $AA due to the [8] in the declaration
immediately after it.

Page 175:
Modified last paragraph:

The value that CLKFREQ returns is actually read from long 0 (the first location in
RAM) and that value can change whenever the application changes the clock
mode, either manually or via the CLKSET command. Objects that are time-sensitive
should check CLKFREQ at strategic points in order to adjust to new settings
automatically.

Page 194:
CON (Constant Block) syntax should be the following:

CON
 Symbol = Expression 〈((,┆)) Symbol = Expression〉…
CON
 #Expression ((,┆)) Symbol 〈[Offset]〉 〈((,┆)) Symbol 〈[Offset]〉 〉…
CON
 Symbol 〈[Offset]〉 〈((,┆)) Symbol 〈[Offset]〉 〉…

• Symbol is the desired name for the constant.
• Expression is any valid integer, or floating-point, constant algebraic expression.

Expression can include other constant symbols as long as they were defined
previously.

• Offset is an optional expression by which to adjust the enumeration value for the
Symbol following this one. If Offset is not specified, the default offset of 1 is
applied. Use Offset to influence the next Symbol’s enumerated value to
something other than this Symbol’s value plus 1.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 3 of 17

Page 199:
New paragraphs below paragraph 1:

A more recommended way to achieve the previous example’s result is to include the
optional Offset field. The previous code could have been written as follows:

CON
 'Declare modes of operation
 #1, RunTest, RunVerbose[3], RunBrief, RunFull

Just as before, RunTest and RunVerbose are 1 and 2, respectively. The [3] immediately
following RunVerbose causes the current enumeration value (2) to be incremented by 3
before the next enumerated symbol. The effect of this is also like before, RunBrief and
RunFull are 5 and 6, respectively. The advantage of this technique, however, is that the
enumerated symbols are all set relative to each other. Changing the line’s starting value
causes them all to change relatively. For example, changing the #1, to #4 causes RunTest
and RunVerbose to be 4 and 5, respectively, and RunBrief and RunFull to be 8 and 9,
respectively. In contrast, if the original example’s #1 were changed to #4, both
RunVerbose and RunBrief would be set to 5, possibly causing the code that relies on those
symbols to misbehave.

The Offset value may be any signed value, but only affects the value immediately
following it; the enumerated value is always incremented by 1 after Symbol’s that don’t
specify Offset. If overlapping values are desired, specifying an Offset of 0 or less can
achieve that effect.

Modified sentence within paragraph 3:

Anything defined this way will always start with the first symbol equal to either 0 (for
new CON blocks) or to the next enumerated value relative to the previous one (within the
same CON block).

Page 203:

New sentences to add at end of RCFAST through PLL16X paragraph:

Note that they are enumerated constants and are not equivalent to the corresponding CLK
register value. See CLK Register on page 28 for information regarding how each
constant relates to the CLK register bits.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 4 of 17

Page 208:
DAT syntax should be the following:

DAT
 〈Symbol〉 Alignment 〈Size〉 〈Data〉 〈[Count]〉 〈, 〈Size〉 Data〉…
DAT
 〈Symbol〉 〈Condition〉 Instruction 〈Effect(s)〉

• Symbol is an optional name for the data, reserved space, or instruction that follows.
• Alignment is the desired alignment and default size (BYTE, WORD, or LONG) of the data

elements that follow.
• Size is the desired size (BYTE, WORD, or LONG) of the following data element immediately

following it; alignment is unchanged.
• Data is a constant expression or comma-separated list of constant expressions. Quoted

strings of characters are also allowed; they are treated as a comma-separated list of
characters.

• Count is an optional expression indicating the number of byte-, word-, or long-sized
entries of Data to store in the data table.

• Condition is an assembly language condition, IF_C, IF_NC, IF_Z, etc.
• Instruction is an assembly language instruction, ADD, SUB, MOV, etc., and all its operands.
• Effect(s) is/are one, two or three assembly language effects that cause the result of the

instruction to be written or not, NR, WR, WC, or WZ.

Page 211:

New paragraph above the Writing Propeller Assembly Code (Syntax 2) section:

Declaring Repeating Data (Syntax 1)
Data items may be repeated by using the optional Count field. For example:

DAT
 MyData byte 64, $AA[8], 55

The above example declares a byte-aligned, byte-sized data table, called MyData,
consisting of the following ten values: 64, $AA, $AA, $AA, $AA, $AA, $AA, $AA,
$AA, 55. There were eight occurrences of $AA due to the [8] in the declaration
immediately after it.

Page 212:
Clarification in third paragraph of the Explanation section:

DIRA is used to both set and get the current direction states of one or more I/O pins
in Port A. A low (0) bit sets the corresponding I/O pin to an input direction. A
high (1) bit sets the corresponding I/O pin to an output direction. All the DIRA

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 5 of 17

register’s bits default to zero (0) upon cog startup; all I/O pins are specified as
inputs by that cog until the code instructs otherwise.

Pages 236 - 237:
LONG syntax should be the following:

VAR

 LONG Symbol 〈[Count]〉
DAT

 〈Symbol〉 LONG Data 〈[Count]〉
((PUB ┆ PRI))
 LONG [BaseAddress] 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2).
• Count is an optional expression indicating the number of long-sized elements for

Symbol (Syntax 1), or the number of long-sized entries of Data (Syntax 2) to
store in a data table.

• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the address of main memory to read or

write. If Offset is omitted, BaseAddress is the actual address to operate on. If
Offset is specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate
on.

New paragraphs to add at end of Long Data Declaration (Syntax 2) section, page 237:

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData long 640_000, $BB50[3]

The above example declares a long-aligned, long-sized data table, called MyData,
consisting of the following four values: 640000, $BB50, $BB50, $BB50. There were
three occurrences of $BB50 due to the [3] in the declaration immediately after it.

Page 280:
Clarification in third paragraph of the Explanation section:

OUTA is used to both set and get the current output states of one or more I/O pins in
Port A. A low (0) bit sets the corresponding I/O pin to ground. A high (1) bit sets
the corresponding I/O pin VDD (3.3 volts). All the OUTA register’s bits default to
zero (0) upon cog startup.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 6 of 17

Page 316:
Additional section after the Scope of Variables section:

Organization of Variables
During compilation of an object, all declarations in its collective Variable Blocks are
group together by type. The variables in RAM are arranged with all the longs first,
followed by all words, and finally by all bytes. This is done so that RAM space is
allocated efficiently without unnecessary gaps. Keep this in mind when writing code that
accesses variables indirectly based on relative positions to each other.

Page 331:
WORD syntax should be the following:

VAR

 WORD Symbol 〈[Count]〉
DAT

 〈Symbol〉 WORD Data 〈[Count]〉
((PUB ┆ PRI))
 WORD [BaseAddress] 〈[Offset]〉
((PUB ┆ PRI))
 Symbol.WORD 〈[Offset]〉

• Symbol is the desired name for the variable (Syntax 1) or data block (Syntax 2) or

is the existing name of the variable (Syntax 4).
• Count is an optional expression indicating the number of word-sized elements for

Symbol (Syntax 1), or the number of word-sized entries of Data (Syntax 2) to
store in a data table.

• Data is a constant expression or comma-separated list of constant expressions.
• BaseAddress is an expression describing the address of main memory to read or

write. If Offset is omitted, BaseAddress is the actual address to operate on. If
Offset is specified, BaseAddress + Offset is the actual address to operate on.

• Offset is an optional expression indicating the offset from BaseAddress to operate
on, or the offset from byte 0 of Symbol.

Page 333:

New paragraphs at end of Word Data Declaration (Syntax 2) section:

Data items may be repeated by using the optional Count field. For example:

DAT
 MyData word 640, $AAAA[4], 5_500

The above example declares a word-aligned, word-sized data table, called MyData,
consisting of the following six values: 640, $AAAA, $AAAA, $AAAA, $AAAA, 5500.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 7 of 17

There were four occurrences of $AAAA due to the [4] in the declaration immediately
after it.

Page 345:
Instruction added between TEST and MOV instructions:

TESTN Bitwise AND a value with the NOT of another to affect flags only; p 410.

Page 350 - 351:
ADDABS row:

ADDABS D, S 100010 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry 1 Written 4

SUBABS row:

SUBABS D, S 100011 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow 2 Written 4

Instruction added between TEST and TJNZ rows:

TESTN D, S 011001 000i 1111 ddddddddd sssssssss Result = 0 Parity of Result Not Written 4

Footnotes added to table:

Note 1: ADDABS C out: If S is negative, C = the inverse of unsigned borrow (for D-S).
Note 2: SUBABS C out: If S is negative, C = the inverse of unsigned carry (for D+S).

Page 353:
ABS opcode table:

–INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
101010 001i 1111 ddddddddd sssssssss Result = 0 S[31] Written 4

Page 355:
ADDABS opcode table:

 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100010 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Carry 1 Written 4

1: If SValue is negative, C Result is the inverse of unsigned borrow (for Value - SValue).

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 8 of 17

Page 398:
New paragraph at bottom of page:

Notice that we defined our reserved space after our explicitly-defined data, rather
than before it. It is important to only use the RES directive after all explicitly
defined data intended for the cog at run-time; that is, after code, bytes, words, and
longs. This is because the RES directive simply increments the compiler’s cog
memory pointer, not the object memory pointer. If we had mistakenly defined
Time (a user-reserved symbol) before Delay (an explicitly-defined long symbol), at
run-time Time and Delay would both end up using the same cog register, instead of
two different registers as was intended.

Page 404:
SUBABS opcode table:

 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
100010 001i 1111 ddddddddd sssssssss Result = 0 Unsigned Borrow 1 Written 4

1: If SValue is negative, C Result is the inverse of unsigned carry (for Value + SValue).

Pages 381 - 383:
The MOVD instruction; new paragraph inserted after Explanation’s first paragraph:

For self-modifying code, however, ensure that the MOVD instruction executes at
least 2 instruction-cycles prior to the instruction that it modifies. This gives the
cog time to write the result before it fetches that instruction for execution;
otherwise, the unmodified instruction will be fetched and executed.

The MOVI instruction; new paragraph inserted after Explanation’s first paragraph:

For self-modifying code, however, ensure that the MOVI instruction executes at
least 2 instruction-cycles prior to the instruction that it modifies. This gives the
cog time to write the result before it fetches that instruction for execution;
otherwise, the unmodified instruction will be fetched and executed.

The MOVS instruction; new paragraph inserted after Explanation’s first paragraph:

For self-modifying code, however, ensure that the MOVS instruction executes at
least 2 instruction-cycles prior to the instruction that it modifies. This gives the
cog time to write the result before it fetches that instruction for execution;
otherwise, the unmodified instruction will be fetched and executed.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 9 of 17

Page 389:
The NOP instruction:

Additional sentences for the end of the Explanation paragraph:

Because of this, the NOP instruction can never be preceded by a Condition, such as IF_Z
or IF_C_AND_Z, since it can never be conditionally executed.

Page 397:
Table 5-5:

Table 0-2: Registers

Register(s) Description

DIRA, DIRB
Direction Registers for 32-bit port A and 32-bit port B. See the Explanation section of DIRA,
DIRB on page 212. The optional “[Pin(s)]” parameter does not apply to Propeller Assembly;
all bits of the entire register are read/written at once, unless using the MUXx instructions.

INA 1, INB 1
Input Registers for 32-bit port A and 32-bit port B. (Read-Only). See the Explanation section
of INA, INB on page 226. The optional “[Pin(s)]” parameter does not apply to Propeller
Assembly; all bits of the entire register are read at once.

OUTA, OUTB
Output Registers for 32-bit port A and 32-bit port B. See the Explanation section of OUTA,
OUTB on page 280. The optional “[Pin(s)]” parameter does not apply to Propeller Assembly;
all bits of the entire register are read/written at once, unless using the MUXx instructions.

CNT 1
32-bit System Counter Register. (Read-Only). See the Explanation section of CNT on page
184.

CTRA, CTRB Counter A and Counter B Control Registers. See CTRA, CTRB on page 204.

FRQA, FRQB Counter A and Counter B Frequency Registers. See FRQA, FRQB on page 219.

PHSA 2, PHSB 2 Counter A and Counter B Phase Lock Loop Registers. See PHSA, PHSB on page 285.

VCFG Video Configuration Register. See VCFG on page 317.

VSCL Video Scale Register. See VSCL on page 320.

PAR 1 Cog Boot Parameter Register. See PAR on page 283.

Note 1: For Propeller Assembly, only accessible as a source register (i.e. MOV Dest, Source).
Note 2: For Propeller Assembly, only readable as a source register (i.e. MOV Dest, Source);

read-modify-write not possible as a destination register.

Page 402:
The SHL instruction’s explanation:

SHL (Shift Left) shifts Value left by Bits places and sets the new LSBs to 0.

Page 403:
The SHR instruction’s explanation:

SHR (Shift Right) shifts Value right by Bits places and sets the new MSBs to 0.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 10 of 17

Page 410:
Added TESTN instruction:

TESTN
Instruction: Bitwise AND a value with the NOT of another to affect flags only.

TESTN Value1, 〈#〉 Value2
Result: Optionally, zero-result and parity of result is written to the Z and C flags.

• Value1 (d-field) is the register containing the value to bitwise AND with !Value2.
• Value2 (s-field) is a register or a 9-bit literal whose value is inverted (bitwise NOT) and

bitwise ANDed with Value1.

 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
011001 000i 1111 ddddddddd sssssssss Result = 0 Parity of Result Not Written 4

Explanation

TESTN is similar to ANDN except it doesn’t write a result to Value1; it performs a bitwise
AND NOT of Value2 into Value1 and optionally stores the zero-result and parity of the
result in the Z and C flags.

If the WZ effect is specified, the Z flag is set (1) if Value1 AND NOT Value2 equals zero.
If the WC effect is specified, the C flag is set (1) if the result contains an odd number of
high (1) bits.

Page 419:
In Reserved Word List, added TESTN instruction between TEST and TJNZ:

TEST
a

Amended the following instructions with ‘#’ footnotes:

DIRB
d#

INB
d#

OUTB
d#

MUL
a#

MULS
a#

ONES
a#

And changed the footnote to:

a = Assembly element; s = Spin element; d = dual (available in both languages); # = reserved for future use

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 11 of 17

Errata Items

Page 18:
Boot Up Procedure, item 2c:

c. If no EEPROM was detected, the boot loader stops, Cog 0 is terminated, the Propeller
chip goes into shutdown mode, and all I/O pins are set to inputs.

Page 29:
Table 1-9 XINPUT row:

0 0 XINPUT Infinite 6 pF (pad only) DC to 128 MHz Input

…should read:

0 0 XINPUT Infinite 6 pF (pad only) DC to 80 MHz Input

Page 181:
Table 4-4, column 1, row 3:

XINPUT 0_0_0_00_010

…should read:

XINPUT 0_0_1_00_010

Page 188:
Example code in the Propeller Assembly Code (Syntax 2) section:

coginit(2, @Update, Pos)

…should read:
coginit(2, @Update, @Pos)

Page 207:
Table 4-7, rows 5 and 6:

Table 0-3: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%00100
%00101

NCO/PWM single-ended
NCO/PWM differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 12 of 17

…should read:

Table 0-4: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%00100
%00101

NCO single-ended
NCO differential

1
1

PHSx[31]
PHSx[31]

0
!PHSx[31]

And Table 4-7, row 26:

Table 0-5: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%11001 LOGIC A == B !A1 == B1 0 0

...should read:

Table 0-6: Counter Modes (CTRMODE Field Values)

CTRMODE Description Accumulate
FRQx to PHSx

APIN
Output*

BPIN
Output*

%11001 LOGIC A == B A1 == B1 0 0

Page 209:
Table 4-8 column headings:

Table 4-8: Example Data in Memory
L 0 2 3 4 5 6
W 0 1 2 3 4 5 6 7 8 9 10 11
B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
D 40 41 53 74 72 69 6E 67 00 00 C2 FF F8 24 00 00 11 22 33 44 20 00 00 00

...should read:

Table 0-7: Example Data in Memory
L 0 1 2 3 4 5
W 0 1 2 3 4 5 6 7 8 9 10 11
B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
D 40 41 53 74 72 69 6E 67 00 00 C2 FF F8 24 00 00 11 22 33 44 20 00 00 00

Page 271:
Example:

X := %00101100 | %00001111

...should read:

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 13 of 17

Example:

X := %00101100 ^ %00001111

Page 350:
The CMPSUB row of the Propeller Assembly Instruction Master Table should read:

CMPSUB D, S 111000 001i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Written 4

Page 360:
Second paragraph of Explanation section:

The Propeller does not use a call stack, so the return address is stored in a
different manner; it is recorded at the location of the routine’s RET command itself.
For the CALL instruction, the assembler searches for a label that is Address with
“_ret” appended to it. It then encodes the address of the label Address_ret into
the CALL instruction as well as the Address you specified to jump to. At run time,
when executing the CALL instruction, the cog first stores the return address (PC +
1) into the source field of the “RET” instruction at Address_ret and then jumps to
Address.

…should read:

The Propeller does not use a call stack, so the return address is stored in a
different manner; it is recorded at the location of the routine’s RET command itself.
For the CALL instruction, the assembler searches for a label that is Address with
“_ret” appended to it. It then encodes the address of that label into the CALL
instruction’s destination (d) field and encodes the Address you specified into the
source (s) field. At run time, when executing the CALL instruction, the cog first
stores the return address (PC + 1) into the source field of the “RET” instruction at
Address_ret and then jumps to Address.

And, in the code example:

call Routine
<other code here>

...should read:

call #Routine
<other code here>

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 14 of 17

Page 361:
Third paragraph:

The return address is written to the Address_ret register unless the NR effect is specified.

...should read:

The return address is written into the source of the Address_ret register unless the NR
effect is specified.

Page 362:
In the CMP and CMPS instruction sections:

Z Result
Result = 0

…should be:

Z Result
D = S

Page 363:
Last sentence of CMPS instruction’s Explanation section:

If the WC effect is specified, the C flag is set (1) if SValue1 is less than SValue2.

In the CMPSUB instruction section:

 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111000 000i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Not Written 4

…should be:

 –INSTR– ZCRI –CON– –DEST– –SRC– Z Result C Result Result Clocks
111000 001i 1111 ddddddddd sssssssss D = S Unsigned (D => S) Written 4

In the CMPSUB Explanation section, the first sentence should read:

CMPSUB compares the unsigned values of Value1 and Value2, and if Value2 is equal
to or less than Value1 then it is subtracted from Value1 (if the WR effect is
specified).

The last two sentences of the last paragraph should be changed to the following:

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 15 of 17

If the WC effect is specified, the C flag is set (1) if a subtraction is possible (Value1 is
equal to or greater than Value2). The result, if any, is written to Value1 unless the
NR effect is specified.

Pages 364 - 365:
In the CMPSX and CMPX instruction sections:

Z Result
Z & (Result = 0)

…should be:

Z Result
Z & (D = S+C)

Page 374:

JMP sets the Program Counter (PC) to Address causing execution to jump that location in
Cog RAM.

...should read:

JMP sets the Program Counter (PC) to Address causing execution to jump to that location
in Cog RAM.

 Page 375:
Second paragraph:

The return address is written to the RetInstAddr register unless the NR effect is specified.

...should read:

The return address is written into the source of the RetInstAddr register unless the NR
effect is specified.

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 16 of 17

© Parallax, Inc. • Supplement/Errata for Propeller Manual v1.0 (#122-32000) • v1.3 10/16/2007 • Page 17 of 17

Page 412 - 413:
In the WAITPEQ and WAITPNE instruction sections:

Z Result
Result = 0

…should be:

Z Result

And the last sentence of each section, referring to the Z flag, should be removed.

	Supplement and Errata for Propeller Manual v1.0 (#122-32000)
	Supplemental Information
	Page 23:
	Page 28:
	 Page 30:
	Page 136:
	Page 165:
	Page 175:
	Page 194:
	Page 199:
	Page 203:
	Page 208:
	Page 211:
	Page 212:
	Pages 236 - 237:
	Page 280:
	Page 316:
	Page 331:
	Page 333:
	Page 345:
	Page 350 - 351:
	Page 353:
	Page 355:
	Page 398:
	Page 404:
	Pages 381 - 383:
	Page 389:
	Page 397:
	Page 402:
	Page 403:
	Page 410:

	TESTN
	Explanation
	Page 419:

	Errata Items
	Page 18:
	Page 29:
	Page 181:
	Page 188:
	Page 207:
	Page 209:
	Page 271:
	Page 350:
	Page 360:
	Page 361:
	Page 362:
	Page 363:
	Pages 364 - 365:
	Page 374:
	 Page 375:
	Page 412 - 413:

