
ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
INTRODUCTION ...5
Version, Trademarks, and Copyrights .. 5
Software License Agreement.. 6
IMPORTANT: Licensing the Software .. 8
Using the Hardware Dongle ... 10
Annual Maintenance ... 11
Support.. 12
Product Updates .. 14
File Types and File Extensions ... 15
Pragmas and Extensions ... 17
Converting from Other ANSI C Compilers .. 19
Optimizations.. 20
Acknowledgments .. 23

GETTING STARTED ...25
Quick Start Guide ... 25
Example Projects .. 27

EMBEDDED PROGRAMMING..29
Embedded Programming Basics ... 29
Some Pitfalls ... 30
Best Practices .. 32
Bit Twiddling.. 34
General Debugging Hints ... 36

CODE::BLOCKS IDE...39
Code::Blocks IDE ... 39
Useful General Settings .. 41
IDE and the Compiler ... 42
Project Management ... 43
Editor .. 45
Handy Features ... 46
C::B Supported Variables ... 47
Menu Reference: Build Options - Project... 51
Build Options - Paths .. 52
Build Options - Compiler ... 53
Build Options - Target .. 55

C PREPROCESSOR..57
C Preprocessor Dialects .. 57
1

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Predefined Macros .. 58
Supported Directives... 60
String Literals and Token Pasting... 62

C IN 16 PAGES...63
Preamble ... 63
Declaration.. 66
Expressions and Type Promotions.. 69
Statements ... 74

C LIBRARY AND STARTUP FILE ..77
C Library General Description ... 77
Overriding a Library Function .. 78
Startup File.. 79
Interrupt Vector Table .. 80
Header Files .. 81
Character Type Functions ... 82
Floating-Point Math Functions ... 84
Standard IO Functions .. 86
Standard Library And Memory Allocation Functions 90
String Functions .. 93
Variable Argument Functions... 96

PROGRAMMING THE CORTEX-M ..97
CMSIS (Cortex Microcontroller Software Interface Standard).......... 99
Cortex-M Compiler-Specific Information .. 101

C RUNTIME ARCHITECTURE ..103
Data Type Sizes .. 103
Assembly Interface and Calling Conventions 105
C Machine Routines.. 107
Memory Map .. 108
Program Areas .. 109
Stack and Heap Functions... 111

COMMAND-LINE COMPILER OVERVIEW ..113
Compilation Process ... 113
Driver .. 114
Compiler Arguments... 115
Preprocessor Arguments ... 117
Compiler Arguments... 118
2

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Assembler Arguments... 119
Linker Arguments ... 120

TOOL REFERENCES...123
MISRA / Lint Code Checking .. 123
Code Compressor (tm).. 134
Assembler Syntax ... 137
Assembler Directives .. 141
Linker Operations ... 146
ImageCraft Debug Format .. 147
Librarian.. 155
3

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
4

INTRODUCTION
Version, Trademarks, and Copyrights

About this Document

This document describes version 8 of the product. The printed document and the
online help are generated from a single source. Since we update our products
frequently, sometimes the printed document becomes out of phase with the shipping
product. When in doubt, please refer to the online document for the most up-to-date
information. This document was last updated on October 10, 2013 5:32 am.

Trademarks and Copyrights

ImageCraft, ICC08, ICC11, ICC12, ICC16, ICCAVR, ICCtiny, ICCM8C, ICC430,
ICCV7 for AVR, ICCV7 for ARM, ICCV7 for 430, ICCV7 for CPU12, ICCV7 for
Propeller, ICCV8 for AVR, ICCV8 for Cortex, MIO (Machine Independent Optimizer)

and Code Compressor™, and this document copyright © 1999-2013 by ImageCraft
Creations Inc. All rights reserved.

Atmel, AVR, MegaAVR, tinyAVR, XMega ® Atmel Corporation.

Motorola, HC08, MC68HC11, MC68HC12 and MC68HC16 ® Motorola Inc. and
Freescale Semiconductor Inc.

MSP430 ® Texas Instruments Inc.

ARM, Thumb, Cortex ® ARM Inc.

All trademarks belong to their respective owners.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Software License Agreement

This is a legal agreement between you, the end user, and ImageCraft. If you do not
agree to the terms of this Agreement, please promptly return the package for a full
refund.

GRANT OF LICENSE. This ImageCraft Software License Agreement permits you to
use one copy of the ImageCraft software product (“SOFTWARE”) on any computer
provided that only one copy is used at a time.

COPYRIGHT. The SOFTWARE is owned by ImageCraft and is protected by United
States copyright laws and international treaty provisions. You must treat the
SOFTWARE like any other copyrighted material (e.g., a book). You may not copy
written materials accompanying the SOFTWARE.

OTHER RESTRICTIONS. You may not rent or lease the SOFTWARE, but you may
transfer your rights under this License on a permanent basis provided that you
transfer this License, the SOFTWARE and all accompanying written materials, you
retain no copies, and the recipient agrees to the terms of this License. If the
SOFTWARE is an update, any transfer must include the update and all prior versions.

LIMITED WARRANTY
LIMITED WARRANTY. ImageCraft warrants that the SOFTWARE will perform
substantially in accordance with the accompanying written materials and will be free
from defects in materials and workmanship under normal use and service for a period
of thirty (30) days from the date of receipt. Any implied warranties on the SOFTWARE
are limited to 30 days. Some states do not allow limitations on the duration of an
implied warranty, so the above limitations may not apply to you. This limited warranty
gives you specific legal rights. You may have others, which vary from state to state.

CUSTOMER REMEDIES. ImageCraft’s entire liability and your exclusive remedy shall
be, at ImageCraft’s option, (a) return of the price paid or (b) repair or replacement of
the SOFTWARE that does not meet ImageCraft’s Limited Warranty and that is
returned to ImageCraft. This Limited Warranty is void if failure of the SOFTWARE has
resulted from accident, abuse, or misapplication. Any replacement SOFTWARE will
be warranted for the remainder of the original warranty period or 30 days, whichever is
longer.

NO OTHER WARRANTIES. ImageCraft disclaims all other warranties, either express
or implied, including but not limited to implied warranties of merchantability and fitness
for a particular purpose, with respect to the SOFTWARE, the accompanying written
materials, and any accompanying hardware.
6

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
NO LIABILITY FOR CONSEQUENTIAL DAMAGES. In no event shall ImageCraft or
its supplier be liable for any damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business
information, or other pecuniary loss) arising out of the use of or inability to use the
SOFTWARE, even if ImageCraft has been advised of the possibility of such damages.
The SOFTWARE is not designed, intended, or authorized for use in applications in
which the failure of the SOFTWARE could create a situation where personal injury or
death may occur. Should you use the SOFTWARE for any such unintended or
unauthorized application, you shall indemnify and hold ImageCraft and its suppliers
harmless against all claims, even if such claim alleges that ImageCraft was negligent
regarding the design or implementation of the SOFTWARE.
7

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
IMPORTANT: Licensing the Software

[A hardware dongle can be used instead of the software licensing scheme described
below. See Using the Hardware Dongle]

The software uses different licensing keys to enable different features. By default, the
software is code size limited to bytes. If you install the software for the first time, the
software is fully functional (similar to a STD license) for 45 days, after which it will be
code limited for an unlimited time. The code limited version is for non-commercial
personal use only.

The latest version of our software is always available through the demo download link
on our website. After downloading and installing demo, you may license the software if
you purchase a license.

Licensing Your Software

To license your software, invoke the ImageCraft License Manager
ICCcortex_LicMgr.exe. The License Manager may be found under the Start
button ImageCraft Development Tools->ICCV8AVR License Manager or
invoked through the C::B IDE under Help->ImageCraft License Manager. You
will see a pop-up window containing a Hardware ID number.

Fill in the serial number as noted on your invoice, and your name or company name,
then click "Copy User Info to the Clipboard" button and then paste the
clipboard content to an email message and send the message to
license@imagecraft.com. The data is formatted for processing and it will
expedite our response.

If you have a valid license, then you may upgrade to the latest version of the software
by simply downloading the latest demo and installing it in the same directory as your
current version. We feel that the ability to obtain easy updates from our website
outweighs the minor annoyances that the registration process causes.

Re-Licensing

If some accident occurs or that the OS or your computer changes, you need to
reinstall the software and get a replacement license key. Follow the instructions above
along with an explanation and we will give you a new license key.

Using the Software on Multiple Computers

If you need to use the software on multiple computers, such as on an office PC and a
laptop, and if you are the only user of the product, you may obtain a separate license
from us. Contact us for details. Alternatively, you may purchase the hardware dongle.
8

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Transferring a License to Another Computer

If you wish to transfer a license from one computer to another one permanently:

 On the old machine, run ICCcortex_LicMgr.exe and click on the Uninstall
button on lower left.

 On the new machine, run ICCcortex_LicMgr.exe.

Email both sets of information you see to license@imagecraft.com and we will
send you a license key for the new computer.
9

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Using the Hardware Dongle

ICCV8 for Cortex allows you to optionally use a hardware dongle instead of the default
software licensing scheme. With a dongle, you may install the compilers on multiple
computers and run it on one machine at any given time.

Using the USB Licensing Dongle

Plug in the USB dongle. It uses the standard Windows USB driver and no additional
driver is needed.

Run “ICCV8Cortex License Manager” (Start->ImageCraft Development Tools-
>ICCV8Cortex License Manager)

 If this is a new purchase, click "Enable Dongle Check."

 If you already have a software license, click "Transfer Software License to
Dongle."

If you are unsure, try “Enable Dongle Check” and if there is no license on the USB
dongle, you will receive an error message.

When a machine is dongle licensed, and if the dongle is not present while running
the compiler, the compiler uses "EXPIRED DEMO" as its license.

If you have BOTH a software license and a licensing dongle (RARE), click "Enable
Dongle Check" to enable dongle check and "Disable Dongle Check" to disable the
check and use the software license.

Please restart the IDE after these operations.

Upgrading a Dongle License

To upgrade the dongle license, on a command prompt, type

c:\iccv8cortex\bin\ilinkcortex --DONGLE:0

and email the serial number to license@imagecraft.com. After we email you the
dongle upgrade code, paste the code into the "Dongle Upgrade Code" edit box in the
ICCV8Cortex License Manager and click "Enter Code."
10

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Annual Maintenance

Purchasing a license also provides a year of maintenance support. During the
maintenance period, you can upgrade to the latest version by installing the latest
demo from our website and contact us at support@imagecraft.com for support.

After one year, the compiler will emit an informational message in the IDE status
window informing you that your maintenance period has expired. This does not affect
the generated code. You may still download the latest demo, but we may request that
you have a current maintenance contract before providing support.

Maintenance is very inexpensively priced at $50 per 12 months. You may purchase it
on our website on the respective compiler tools page and by providing your serial
number in the customer notes. Once we process the order, we will email you a
maintenance code which you enter using the ICCV8Cortex License Manager.
11

mailto:support@imagecraft.com

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Support

Our experience since releasing our first compiler in 1994 is that most compiler “bug
reports” are in fact not defects with our compilers. If you are not experienced with
Standard C or embedded system programming, please refer to a good C tutorial book
or websites for help or try the C FAQ site http://c-faq.com/.

Email is the best method to contact us. We will usually get back to you within the same
day and sometimes even the same hour or minute. Some people assume that they
will only get help if they use threatening tones or are abusive. Please do not do this.
We will support you to the best of our ability. We build our reputation based on
excellent support.

Before contacting us, find out the version number of the software by selecting “About
ICCV8 for Cortex” in the Help menu.

E-mail support questions to support@imagecraft.com

Program updates are available free of charge for the first six months. Files are
available from our website: http://www.imagecraft.com

Sometimes we will request that you send us your project files so we may duplicate a
problem. If possible, please use a zip utility to include all your project files, including
your own header files, in a single email attachment. If you cannot send us the entire
project when requested, it is usually sufficient if you can construct a compilable
function and send that to us. Please do not send us any files unless requested.

We have a mailing list called icc-cortex pertinent to our ICCV8 for Cortex product
users. To subscribe, send an email to icc-cortex-
subscribe@yahoogroups.com. You do not need a Yahoo ID to join. However, if
you wish to use the Yahoogroups web features (e.g., file area, checking the archive,
etc.), then you must obtain a Yahoo ID.

The mailing list should not be used for general support questions. On the other hand,
our customers who are active on the mailing lists probably have more hardware-
specific knowledge than we do, as we are primarily a software company. We may
request that you send your questions there.

Our postal address and telephone numbers are

ImageCraft
2625 Middlefield Rd, #685
Palo Alto, CA 94303
U.S.A.

(650) 493-9326
12

http://c-faq.com/
mailto:support@imagecraft.com
http://www.imagecraft.com

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
(866) 889-4834 (FAX, toll free)

If you purchased the product from one of our international distributors, you may wish
to query them for support first.
13

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Product Updates

The product version number consists of a major number and a minor number. For
example, V8.02 consists of the major number of 8 and the minor number of .02. Within
the initial six months of purchase, you may update to the latest minor version free of
charge. To receive updates afterward, you may purchase the low-cost annual
maintenance plan. Upgrades to a new major version usually require an additional
cost.

With the software protection scheme used in the product, you get the upgrades by
downloading the latest “demo” available on the website and installing it in the same
PC as your current installation. Your existing license will work on the newly installed
files. You may have multiple versions of the products on the same machine
concurrently. Do keep in mind that they share the same Windows Registry entries and
all other system-related information.
14

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
File Types and File Extensions

File types are determined by their extensions. The IDE and the compiler base their
actions on the file types of the input.

CodeBlocks IDE (C::B) and Project Files

 .cbp - CodeBlocks project file.

 .mak - Makefile generated by C::B. Not used by C::B itself, but for users who wish
to bypass the build mechanism in C::B and use command line build system.

 .prj - ImageCraft project specific information file.

The project files are stored in the project directory. Output files are stored in the
project directory by default and can be overridden, see Build Options - Paths.
Intermediate object files are stored in the .objs directory below the project directory.

Input Files

 .a - is a library file. The package comes with several libraries. libccortex.a is
the basic library containing the Standard C library and ARM Cortex-M-specific
routines. The linker links in modules (or files) from a library only if the module is
referenced. You may create or modify libraries as needed.

Our library format is in ASCII.

 .c - is a C source file.

 .h - is a header file.

 .i - is a C preprocessed source file. This is removed after a successful compile.

 .s - is an assembly source file or an output file from the compiler. If latter, it is
removed after a successful compile.

Output Files

 .dbg - ImageCraft internal debug command file.

 .hex - an Intel HEX output file.

 .lst - an interspersed C and asm listing file. The object code and final addresses
for your program files are gathered into a single listing file.

 .mp - a map file. It contains the symbol and size information of your program in a
concise form.
15

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 .o - an object file, produced by the assembler. An output executable file is the
result of linking multiple object files.

 .s - for each C source file, an assembly output is generated by the compiler. This
is deleted after a successful compile.

 .s19 - a Motorola Motorola/Freescale S19 Record executable file.
16

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Pragmas and Extensions

The C Preprocessor accepts compiler-specific extensions using the #pragma control
and the equivalent C99 _Pragma() keyword; e.g., the following are equivalent:

#pragma abs_address:0x1000
_Pragma(“abs_address:0x1000”)

This allows you to write a macro definition that expands to a pragma control line:

#define EMOSFN(ty, f, param) PRAGMA(ctask eMOS__##f)
#define PRAGMA(x) _Pragma(#x)
...

EMOSFN(void, MemFreeAll, (void))

expands to

#pragma ctask eMOS__MemFreeAll

The actual code (from our eMOS RTOS) defines EMOSFN multiple ways to get both
the ctask declaration and a function declaration with minimal typing, to minimize
typographical errors.

#pragma

The compiler accepts the following pragmas:

 #pragma warn message

Emits a warning message similar to the C preprocessor directive #warning.

 #pragma ignore_unused_var name1 name2 ...

This must appear inside a function and specifies that the named arguments are
intentionally unused so no warning message should be generated for them.

#pragma data:noinit

#pragma data:user_signatures

Generating Production ELF File
17

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

#prgama lit_abs_address:<address>
#pragma code_abs_address:<address>

...

C++ Comments

If you enable Compiler Extensions (Project->Options->Compiler), you may use C++
style comments in your source code.

Binary Constants

If you enable Compiler Extensions (Project->Options->Compiler), you may use
0b<1|0>* to specify a binary constant. For example, 0b10101 is decimal 21.

Inline Assembly

You may use the pseudo function asm(“string”) to specify inline asm code.
18

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Converting from Other ANSI C Compilers

This page examines some of the issues you are likely to see when you are converting
source code written for other ANSI C compilers (for the same target device) to the
ImageCraft compiler. If you write in portable ANSI C as much as possible in your
coding, then there is a good chance that most of your code will compile and work
correctly without any problems.

 Our char data type is unsigned.

 Extended keyword. Some compilers use extended keywords that may include
far, @, port, interrupt, etc. port can be replaced with memory references.
For example:

char porta @0x1000;
...
(our compiler)
#define porta (*(volatile unsigned char *)0x1000)

Generally, we eschew extensions whenever possible. More often than not,
extensions seem to be used more to lock a customer to a vendor’s environment
than to provide a solution.

 Some compilers do not support inline assembly and use intrinsic functions and
other extensions to achieve the same goals.

 The assembler directives are almost certainly different.

 Some vendors’ assemblers can use C header files. Ours do not.
19

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Optimizations

ImageCraft compilers are derived from the LCC compiler (see Acknowledgments). As
such, the portable front end of the LCC compilers perform the following optimizations:

 Algebraic Simplifications and Constant Folding.

The compiler may replace expensive algebraic expressions with simpler
expressions (e.g., adding by 0, dividing by 1, etc.). The compiler also evaluates
constant expressions and “folds” them (e.g., 1+1 becomes 2). The compiler also
performs these optimizations on floating-point constants and the results may be
slightly different if the floating-point constants are not “folded.” This is because the
precision and range of the floating-point operations of the host CPU (e.g., Intel
processors) differ from the target CPU. In most cases, any minor differences will
not be an issue.

 Basic Block Common Subexpression Elimination.

Expressions that are reused within a basic block (i.e., a sequence of straight line
code without jumps) may be cached in a compiler-created temporary and not
recomputed.

 Switch Optimizations.

The compiler analyzes the switch values and generates code using a combination
of binary searches and jump tables. The jump tables are effective for densely
packed switch values and the binary searches locate the right jump table quickly.
In the case where the values are widely spread or few in numbers, a simple if-
then-else search is performed.

The compiler code generator (the “backend”) uses a technique called bottom-up tree
rewriting with dynamic programming to generate assembly code, meaning that the
generated code is locally (i.e., per expression) optimal. In addition, the backend may
perform the following optimizations. Note that these are ImageCraft enhancements
and not part of the standard LCC distribution.

 Peephole Optimizations.

While locally optimal, the generated code may still have redundant fragments
resulting from different C statements. Peephole optimizations eliminate some of
these redundancies.

 Register Allocation.

For targets with multiple machine registers (e.g., AVR, MSP430, and ARM), for
each function, the compiler performs register allocation and tries to pack as many
local variables as possible into the machine registers and thereby increase
20

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
generated code performance. We use a sophisticated algorithm that analyzes the
variable usage (e.g., the program range where it is used) and may even put
multiple variables into the same register if their usages do not overlap.

This may cause confusion while debugging, as variables may seem to change
values when you don’t expect them to change. However, this is correct if the
register previously allocated to a variable is now allocated to a different variable.

 Register History.

This works in tandem with the register allocator. It tracks the contents of the
registers and eliminates copies and other similar optimizations.

Machine Independent Optimizer (MIO)

MIO is a state-of-the-art function-level optimizer, available on the PRO edition of
select compilers. It performs the following optimizations on a function level, taking into
consideration the effect of control flow structures:

 Constant Propagation.

Assigning constants to a local variable is tracked and the use of the variable is
replaced by the constant if possible. Combined with constant folding, this can be a
very effective optimization.

 Global Value Numbering.

Similar to Common Subexpression Elimination. This replaces redundant
expressions at a function level.

 Loop Invariant Code Motion.

Expressions that do not change inside loops are moved outside.

 Advanced Register Allocation.

The already powerful register allocator is augmented by a “web” (different from
the Internet web) building process that effectively treats different uses of a single
variable as multiple variables, allowing even better register allocation to be
performed.

ImageCraft has invested a considerable amount of effort on putting a state-of-the-art
optimizer infrastructure in place. Currently the MIO optimizations benefit mainly
execution speed and some small improvement in code size. We will continue to tune
the optimizer and add in new optimizations as time progresses.
21

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The code compression optimization may be enabled in addition to the MIO
optimizations. This combination gives you the smallest code while alleviating some of
the speed degradation introduced by the Code Compressor.

Mixed Arithmetic Type Optimizations

ImageCraft compilers minimize the integer promotions dictated by the C Standard as
long as the correct results are produced. The base STANDARD performs basic
optimizations (e.g., byte operations are used whenever possible for 8-bit targets) and
the PRO edition performs more aggressive optimizations (e.g. ,16-bit multiply with 32-
bit result is used when it makes sense rather than promoting both operands to 32-bits
and then use the slower 32-bit multiply).
22

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Acknowledgments

The front end of the compiler is lcc: “lcc source code (C) 1995, by David R. Hanson
and AT&T. Reproduced by permission.”

The C preprocessor is licensed from Unicals http://www.unicals.com.

The installation uses the 7 Zip program 7za.exe for unpacking some of the files. A
copy of the program is installed under c:\iccv8cortex\bin. 7 Zip uses the GNU
LGPL license and you may obtain your copy of the program from their site , http://
www.7-zip.org/.

All code used with permission. Please report all bugs to us directly.
23

http://www.unicals.com

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
24

GETTING STARTED
Quick Start Guide

The new IDE, based on Code::Blocks (C::B for short) is as easy to use as the IDE in
the previous releases; it just has a different look and more features. Don't let the new
features intimidate you, as it will quickly become apparent that many of those features
will simplify your activities and shorten the time required to complete a project or a set
of projects. The first improvement that you will notice is the built-in editor, which is very
much a programmer's editor and will likely negate your need or desire to use an
external editor when writing code.

C::B impliments the concept of a workspace and starts up with suitable defaults for
creating application projects and writing code.

Creating a Project
1. Start the Code::Blocks IDE.

2. Click on File->New->Project...

3. Click on ImageCraft Cortex Project.

4. Click on Go.

5. Enter the name of your project in the Project Title text box. The other empty
or <invalid> text boxes will be filled in automatically for you as you enter the
project title.

6. Click on Next when you are satisfied with the project name and paths.

7. Click Finish and you will have a project framework set up for you with the
main.c already created.

8. Click on Ok.

9. At this point you are ready to begin writing code for your project.

10. Repeat items 1 - 8 for as many projects that you want in the current workspace.

Compiling/Building a Project
1. If your workspace only contains one project, go to item #2. Otherwise, if your

workspace contains multiple projects, in the Projects tab of the Management
dialog window, right-click on the project that you wish to compile/build and select
Activate project. Double-clicking on the project name will also activate the
project.

2. Click on Project->Build options... Select the appropriate target device

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
from the Device Configuration drop-down list.

3. If you have other options that require changing, you will find most of them within
the tabs of the Build options... dialog window.

You are now ready to compile your project. You may do so by clicking on Build-
>Build or one of the half-dozen other methods of building or rebuilding your project.
You can learn about the alternatives by reading the Code::Blocks documentation.
Compiling all the projects in a workspace is as simple as clicking on Build->Build
workspace.
26

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Example Projects

Our compiler product is designed with the philosophy of powerful professional
features that are easy to use. The compilers are command-line programs with lots of
command-line switches to customize their operations, but the user interface is
primarily through a GUI IDE (Integrated Development Environment).

The best way to get familiarized with our tools is by working with the provided example
programs. Once installed, invoke the “ICCV8 for Cortex CodeBlocks IDE” from the
Start menu ImageCraft Development Tools, then File->Open, making sure
that the file type is set to either “All Files” or “CB Workspace Files” and browse to
c:\iccv8cortex\examples.cortex\ and select examples.workspace.

The C::B IDE organizes your work files into projects and workspace. Think of a project
as a set of files that produce one executable, and a workspace consists of one or
more possibly related projects. For example, you may want to organize all projects for
a particular vendor under a single workspace, or you may simply work at the project
level and eschew workspace altogether.

The examples.workspace comprises over a few projects. Invoking Build-
>Rebuild Workspace will rebuild all the projects. They are a collection of projects
from various and sundry sources that are intended to give you some insight into using
our development tool set and the new C::B IDE.

You will also note that some projects have warnings related to the target part being
replaced by a newer part. Those projects will be updated to the newer target part in
the near future.

At any given time, one of the projects is the active project, indicating by the project
name being in bold in the workspace list. When you do Build->Build or Build-
>Rebuild, the active project will be built.

Source files are C or assembly files that are needed for the project. They have .c and
.s extensions respectively. C::B display them under the “project” folder icon under
each project name. Double-click on a file to open the file in the editor.
27

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
28

EMBEDDED PROGRAMMING
Embedded Programming Basics

With some exceptions, a basic MCU control program consists of the following pieces:

 Some low-level functions that interface with the hardware, e.g., reading and
writing the IO registers.

 IO register and other system initialization code.

 A set of interrupt handlers to handle real-world data, e.g., sensor input, timer
firing, etc.

 A set of “high-level” processing functions, e.g., what to do with the gathered data.

 A control function. This can be a main routine that loops through all the high level
functions, or may be a task switcher or an RTOS that invokes the functions as
needed.

This document does not explain embedded programming in full, as there are many
excellent resources and books on the subjects. Nevertheless, here are some topics
that you may find useful.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Some Pitfalls

If you only have experience in writing C/C++/Java/etc. for PC, Mac, or other host
platforms, there are some learning curves in writing efficient embedded programs. For
example:

 Our compilers are C compilers and not C++ compilers. Besides the obvious
difference that C does not support classes, templates, etc., declarations are
allowed only after a beginning { and the compiler does not perform much of the
cross-module checking. For example, if you define a global variable to have type
A, but then declare it in another module that it has type B, unless the compiler
sees the conflicting types in the same translation unit, then it will not complain,
unless you have the PRO edition and enable Cross Module Type Checking.
See Build Options - Compiler.

 Typically a “Hello World” program will not compile as is, because printf and
other stdio functions require a low-level function (putchar) to write to the output
device. This is highly device- and board-specific. For example, some devices may
not support any UART port at all, or sometimes you want the output to be
displayed on a LCD.

Therefore, to use printf and other output functions, you must supply your own
putchar routines. We do provide some examples under the
c:\iccv8cortex\examples.cortex\ directory.

 Embedded devices typically have small memory footprints. A full implementation
of printf with %f floating-point support typically uses over 10K bytes of program
memory, which is sometimes bigger than the total memory available in some of
these devices.

For this reason, we provide 3 versions of the printf functions, with different
features and different memory requirements. You can select the different versions
under Project->Build Options->Target.

Even then, sometimes you just cannot use printf and must use a lower-level
function instead.

 Writing code for a microcontroller (MCU) typically requires initializing the MCU
peripheral devices by writing various values to their IO registers, and then read
and write to other IO registers to perform some functions, such as converting an
analog signal into digital value using the ADC converter.

C excels in allowing you to write such code without resorting to writing assembly
code, as the IO registers usually are mapped in such a way that you can refer to
them by name, e.g.
30

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
unsigned char c = PINA; // read from PINA

On select products, we include an Application Builder that generates peripheral
initialization code through a point-and-click interface. While the vendor’s
datasheet is still needed, it can save significant time in the beginning of the
projects.

Unfortunately, the Application Builder requires a lot of effort to implement and
support, even for a new variant of the chip that the vendor pushes out (we
typically do not get support from the vendor and must plow through the datasheet
ourselves) and thus the Application Builder may not be available for all devices.

 If your program fails in random ways, it is almost the case that there is a random
memory overwrite in the programs. Most (much higher than 90%) of the bug
reports submitted to us are user errors. C has plenty of ropes to hang oneself
with, and writing for embedded MCU makes the situation worse, as there is no OS
to trap exceptions. Your programs would just fail, and often randomly.

 Whenever possible, our compilers pack multiple variables in a single CPU
register. This is not a bug. This greatly improves the efficiency of the generated
code, which is important in fitting programs for small memory devices.
31

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Best Practices

The best way to debug your programs is not to have bugs in the first place. The
following rules may help eliminate some of the problem areas.

 Enable MISRA Checks and Cross Module Type Checking. See Build Options -
Compiler.

 Heed the warnings from the compiler. For example, when our compiler says,
“calling a function without prototype may cause a runtime error...,” we mean it. If
your function returns a long and you do not declare the prototype, for example,
your program may fail.

 Declare handlers for all interrupts, even if you don’t expect the interrupt to trigger.
Have the fail-safe handler do something that informs you that, indeed, something
unexpected has happened.

 Accessing a non-8-bit variable is often non-atomic on 8-bit architectures. For
example,

extern unsigned counter;
...
while (counter != SOME_NUMBER)
...

Accessing counter may require multiple instructions, which can get interrupted.
If counter is modified inside an interrupt handler, then the value accessed in the
loop may be inconsistent.

Setting a bit in an 8-bit variable is also often non-atomic. When in doubt, check the
.lst listing file.

 Pointers and arrays are not the same. Arrays have storage space associated with
them. A pointer is meant to contain address of another storage space.

 Access pointers and arrays with care. If a pointer does not contain a valid
address, reading it will return garbage and writing to it could cause your program
to crash. Do not make any assumption about variable layout in SRAM or on the
stack.

C does not do array bound checking so it is possible for you to accidentally
access off the array boundary. Remember that array index starts at 0 and thus the
last element is one less than the size you declare.

 Use typecast only when absolutely necessary.
32

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 Declare any variables that may change by an interrupt handler with the
volatile qualifier.

 Some CPUs have an alignments requirement. For example, reading a byte
stream and then trying to access a 16-bit or 32-bit item in an arbitrary position of
the stream may cause the CPU to fault due to the item address not being aligned.
33

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Bit Twiddling

A common task in programming the microcontroller is to turn on or off some bits in the
IO registers. Fortunately, Standard C is well suited to bit twiddling without resorting to
assembly instructions or other non-standard C constructs. C defines some bitwise
operators that are particularly useful.

Note that while our compilers generate optimal instructions for bit operations, they
may be non-atomic even on 8-bit variables. Use them with care if the variable are
accessed in both the main application and inside an interrupt handler.

 a | b - bitwise or. The expression denoted by a is bitwise or’ed with the
expression denoted by b. This is used to turn on certain bits, especially when
used in the assignment form |=. For example:

PORTA |= 0x80; // turn on bit 7 (msb)

 a & b - bitwise and. This operator is useful for checking if certain bits are set. For
example:

if ((PINA & 0x81) == 0) // check bit 7 and bit 0

Note that the parentheses are needed around the expressions of an & operator,
since it has lower precedence than the == operator. This is a source of many
programming bugs in C programs. Note the use of PINA vs. PORTA to read a port.

 a ^ b - bitwise exclusive or. This operator is useful for complementing a bit. For
example, in the following case, bit 7 is flipped:

PORTA ^= 0x80; // flip bit 7

 ~a - bitwise complement. This operator performs a ones-complement on the
expression. This is especially useful when combined with the bitwise and operator
to turn off certain bits:

PORTA &= ~0x80; // turn off bit 7

The compiler generates optimal machine instructions for these operations. For
example, the sbic instruction might be used for a bitwise and operator for
conditional branching based on bit status.

Bit Macros

Some examples of macros that can be useful in handling bit manipulations are:

#define SetBit(x,y) (x|=(1<<y))
#define ClrBit(x,y) (x&=~(1<<y))
#define ToggleBit(x,y) (x^=(1<<y))
34

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
#define FlipBit(x,y) (x^=(1<<y)) // Same as ToggleBit.
#define TestBit(x,y) (x&(1<<y))

Bit Twiddling vs. “bit” Variable, Bitfield etc.

Some compilers support C extensions to access individual bits, such as using
PORTA.2 to access bit 2 of the IO register PORTA. By definition, extensions are not
portable to other standard C compilers. Also, note that the bit-twiddling operations
listed here produce the best code and are entirely portable. Furthermore, using the
suggested macros above may make them easier to use. Therefore, our compilers do
not support this extension.

With the exception of the Cortex-M compiler, our compilers generally generate better
code for bit macros rather than bitfields. With the Cortex-M compiler, since the Cortex-
M Thumb-2 instruction set supports bitfield instructions, we have optimized the Cortex
compiler to fully support the bitfield instructions.

For non-Cortex compilers, we still recommend using bit macros instead of bitfields for
the best code.
35

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
General Debugging Hints

Debugging embedded programs can be very difficult. If your program does not
perform as expected, it may be due to one or more of the following reasons.

 The default configurations of some CPUs may not be what is “reasonably”
expected. Some examples include:

 For devices with external SRAM, the hardware interface may need time to
stabilize after device reset before the external SRAM can be accessed cor-
rectly.

 Your program must use the correct memory addresses and instruction set.
Different devices from the same family may have different memory addresses or
may even have slightly different instruction sets (e.g., some devices may have a
hardware multiple instruction). Our IDE typically handles these details for you.
When you select the device by name, the IDE generates the suitable compiler and
linker switches. However, if your hardware is slightly different (e.g., you may have
external SRAM) or if the device you are using is not yet directly supported by the
IDE yet, you can usually select “Custom” as your device and enter the data by
hand.

 If your program crashes randomly, it is almost certainly a memory overwrite error
caused by logic or other programming errors. For example, you may have a
pointer variable pointing to an invalid address, and writing through the pointer
variable may have catastrophic results that do not show up immediately, or that
you overwrite beyond the bound of an array.

Another source of such memory errors is stack overflow. The stack typically
shares space with variables on the SRAM, and if the stack overflows to the data
variables, Bad Things May Happen (tm).

 If you access a global variable inside an interrupt handler, be sure that any
modifications of the global variable in the main application cannot be interrupted.
Non-atomic access (i.e., access that may require multiple machine instructions)
includes access to 16- or 32-bit variables, bit operations and non-basic C types
(i.e., array).

 Spurious or unexpected interrupt behaviors can crash your program:

 You should always set up a handler for “unused” interrupts. An unexpected
interrupt can cause problems.

 Beware that accesses to variables larger than the natural data size of the
CPU require multiple accesses. For example, writing a 16-bit value on an 8-bit
CPU probably requires at least two instructions. Therefore, accessing the
36

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
variable in both the main application and interrupt handlers must be done with
care. For example, the main program writing to the 16-bit variable may get
interrupted in the middle of the 2-instruction sequence. If the interrupt handler
examines the variable value, it would be in an inconsistent state.

 Most CPU architectures do not allow nested interrupts by default. If you
bypass the CPU mechanism and do use nested interrupts, be careful not to
have unbound nested interrupts.

 On most systems, it is best to set your interrupt handlers to execute as fast as
possible and to use as few resources as possible. You should be careful
about calling functions (your own or a library) inside an interrupt handler. For
example, it is almost never a good idea to call such a heavy-duty library func-
tion as printf inside an interrupt handler.

 With few exceptions, our compilers generate reentrant code. That is, your
function may be interrupted and called again as long as you are careful with
how you use global variables. Most library functions are also reentrant, with
printf and related functions being the main exceptions.

 Test your external memory interface carefully. For example, do not just walk the
entire external RAM range and verify write a few patterns in a single loop, as it
might not detect the case where the high address bits are not working correctly.

 The compiler may be doing something unexpected, even though it is correct. For
example, for RISC-like targets such as the Atmel AVR, TI MSP430 and the ARM
CPU, the compilers may put multiple local variables in the same machine register
as long as the usage of the local variables does not overlap. This greatly improves
the generated code, even though it may be surprising when debugging. For
example, if you put a watch window on two variables that happen to be allocated
to the same register by the compiler, both variables would appear to be changing,
even though your program is modifying only one of them.

 The Machine Independent Optimizer makes debugging even more challenging.
MIO may eliminate or move code or modify expressions, and for RISC-like
targets, the register allocator may allocate different registers or memory locations
to the same variable depending on where it is used. Unfortunately, currently most
debuggers have only limited support for debugging of optimized code.

 You may have encountered a compiler error. If you encounter an error message of
the form

“Internal Error! ...,”

this means the compiler has detected an internal inconsistence. If you see a
message of the form
37

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
...The system cannot execute <one of the compiler programs>

this means that unfortunately the compiler crashed while processing your code. In
either case, you will need to contact us. See Support.

 You may have encountered a compiler bug. Unfortunately, the compiler is a set of
relatively complex programs that probably contain bugs. Our front end (the part
that does syntax and semantic analysis of the input C programs) is particularly
robust, as we license the LCC software, a highly respected ANSI C compiler front
end. We test our compilers thoroughly, including semi-exhaustively testing the
basic operations of all the supported integer operators and data types.

Nevertheless, despite all our testing, the compiler may still generate incorrect
code. The odds are very low, though, as most of the support issues are not
compiler errors even if the customer is “certain of it.” If you think you have found a
compiler problem, it always helps if you try to simplify your program or the function
so that we may be able to duplicate it. See Support.

Testing Your Program Logic

Since the compiler implements the ANSI C language, a common method of program
development is to use a PC compiler such as Borland C or Visual C and debug your
program logic first by compiling your program as a PC program. Obviously, hardware-
specific portions must be isolated and replaced or stubbed out using dummy routines.
Typically, 95% or more of your program's code can be debugged using this method.

If your program fails seemingly randomly with variables having strange values or the
PC (program counter) in strange locations, then possibly there are memory overwrites
in your program. You should make sure that pointer variables are pointing to valid
memory locations and that the stack(s) are not overwriting data memory.

Listing File

One of the output files produced by the compiler is a listing file of the name
<file>.lst. The listing file contains your program's assembly code as generated by
the compiler, interspersed with the C source code and the machine code and program
locations. Data values are not included, and library code is shown only in the
registered version.
38

CODE::BLOCKS IDE
Code::Blocks IDE

Introduced in V8 of our product line, Code::Blocks IDE (C::B) is an open-source cross-
platform C/C++ IDE based on the concept of functional extensions using plugins. This
allows developers to provide plugins that enhance the IDE without hard-coding these
enhancements into the core IDE code.

C::B has workspace and project support and symbol browsing (e.g., jumping to a
function declaration or implementation), and the editor supports all modern features
such as syntax highlighting and code folding.

The base C::B is very flexible and can support a variety of host and cross compilers.
Our goal in porting C::B is to make it integral to the specific product that we support.
For example, you may invoke Project->Build Options and select the target
device list by name, and the appropriate memory addresses will automatically be used
when you build the projects.

For users of our previous generation of IDE, this is the type of features that makes our
IDE very easy to use. We expended a lot of effort to bring ease-of-use features to
C::B.

The C::B project has extensive documentation on the IDE at http://
www.codeblocks.org/, as such we will not describe C::B in details. This chapter
highlights the modifications ImageCraft made to C::B to better support our users, plus
the main C::B features that are most useful to our users.

Basic Workflow

The basic workflow is to organize all files that are used to produce a single executable
output into a project. The most important files are the source files (.c extension for a
C source file and .s for assembly source file), but notes and include files can be
added to the project. Multiple related projects (e.g., an application project and the
bootloader project) can optionally be organized in a workspace.

For each project, you specify the compiler options using Project->Build
Options and invoke Project->Build (or click on the Build icon on the toolbar) to
build your project whenever you modify the source files. On some products, we
include extras such as the Application Builder for generating peripheral initialization
code via a GUI interface and direct device programming support of the target devices.

http://www.codeblocks.org
http://www.codeblocks.org

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Locations of C::B Files

C::B stores certain files in different locations from the previous IDE: the project
directory contains the files <project name>, <project name>.cbp,
<project name>.prj, <project name>.depend, and <project
name>.layout. They are used by CodeBlocks and the compiler and should not be
modified.

Output files are stored in the project directory by default and can be overridden, see
Build Options - Paths.

The subdirectory .objs under the project directory contains the intermediate object
files.
40

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Useful General Settings

You invoke Project->Build Options to change compiler settings.

CodeBlocks has many other customization options, accessed through the Settings
menu. The first few items, Environments, Editor and Debugger are probably
the most important. The Compiler settings are generally superseded by ImageCraft
specific Project->Build Options, except for the locations of the toolchain
executables, which should be set correctly to c:\iccv8cortex.

Feel free to explore the different options available. Here are some that you may wish
to modify:

Environments

 Allow only one running instance

if unchecked, multiple copies of CodeBlocks can be run at the same time. Useful if
you have multiple ImageCraft compilers installed.

 Check for externally modified files

Note that CodeBlocks only checks for modified files when the focus is switched
from outside of CodeBlocks to CodeBlocks.

Under the Autosave panel (click on Autosave on left pane)

 Automatically save source files... and Automatically save
projects...

Useful to avoid loss of files from a system crash or other catastrophes.
41

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
IDE and the Compiler

Keep in mind that the compiler and the IDE are separate programs: the compiler is the
C language translator and the IDE is a GUI shell on top to make programming using
the compiler easier.

For example, the unit of translation for the compiler is a source file (usually ending
with a .c extension), whereas the project management feature (see next section) is
provided by the IDE. What this means is that the compiler treats things that are
defined in one source file (e.g., #define, variable declaration, etc.) separate from
other source files, unless one file is #included by another file. In which case, the
effect is that the compiler textually substitutes the #include statement with the
content of the included file.
42

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Project Management

The IDE’s Project Manager allows you to group a list of files into a project. This allows
you to break down your program into small modules. When you perform a project
Build function, only source files that have been changed are recompiled. Header file
dependencies are automatically generated. That is, if a source file includes a header
file, then the source file will be automatically recompiled if the header file changes.

Unlike the IDE in the previous versions of our products, C::B does not use the
standard makefile but instead uses an internal XML-based schema. Since a number
of our users like the option of using a standard makefile (perhaps in their batch build
and test process), C::B can generate a makefile if requested.

Creating a New Project

To create a new project, use File->New->Project. Be sure that the project type
ImageCraft Projects is on the dropdown box list. Then click on the project icon
and then the GO button. You can then follow the wizard’s instructions to create a new
project. The project title will be used as the root name of project directories, project
file, and also the output file.

When you create a new project, C::B automatically creates a main.c and add it to the
project list. If you already have your own source files, you may remove the default file
from your project (right-click the project name on the project pane, then expand the
sources icon and select the file main.c, and then select Remove File from
Project).

You can create new file using File->New->Files, and select the file type. You have
the option to add the new file to the project or you may add any files to the project by
Project->Add Files.

Project Build Options

Compiler options are kept with the project files so that you can have different projects
with different targets. When you start a new project, a default set of options is used.
You may set the current options as the default or load the default options into the
current option set.

To avoid cluttering up your project directory, you may specify that the output files and
the intermediate files that the tools generate reside in a separate directory. Usually
this is a subdirectory under your project directory. See Build Options - Paths.
43

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Building a Project

You can build a project by invoking Build->Build (Ctrl+F9)or by clicking on the
Build icon. The project manager recompiles only the files that are changed. This can
save a significant amount of time when your project gets larger. In some rare cases, if
somehow the project manager does not rebuild a source when it should, you can
perform a Build->Rebuild (Ctrl+F11) to rebuild all source files.

The various “Run” commands (e.g., Build->Build and Run) do not work for the
embedded products.
44

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Editor

The C::B editor has most of the features you expect from a modern editor:

 language-sensitive syntax highlighting

 line number display

 bookmarks

 code folding: i.e., collapse a block of code

 automatic brace matching

 block indent and outdent

 integrated code browing: the editor parses the C source files and allow you to
jump to function definition by selecting the function name on the drop-down list,
and other features

plus many other features. Since it uses a plugin architecture, you may even download
plugins that extend the functionality of the IDE and the editor. For example, Plugins-
>AStyle does automatic source-code formatting. To select a different formatting
style, use Settings->Editor->Source Formatter.

Configuring the Editor

Settings->Editor allows you to configure the editor and various plugins.
45

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Handy Features

Some of the more useful features of C:B are:

 Code folding and unfolding to make cleaner display.

 Comment / Uncomment a block of selected text using

Edit->...(comment)...

 Indent a block of selected text using TAB and outdent using shift-TAB.

 Jump to any function definition by drop down list (the row under the toolbox icons).

 Right-click on a function name and select to find its implementation or declaration.

 Right-click anywhere on the source file and select “Swap Header / Source” to
open the header file with same name.

 Format source code using Plugins->Source Code Formatter (AStyle).
46

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
C::B Supported Variables

C:B has a rich set of built-in variables. They can be used in the Build Options edit
boxes for executing commands or specifying file path, etc. The following are copied
from the CodeBlocks wiki in http://www.codeblocks.org/docs/
main_codeblocks_en.html.

CodeBlocks workspace

$(WORKSPACE_FILENAME), $(WORKSPACE_FILE_NAME),
$(WORKSPACEFILE), $(WORKSPACEFILENAME)

The filename of the current workspace project (.workspace).

$(WORKSPACENAME), $(WORKSPACE_NAME)

The name of the workspace that is displayed in tab Projects of the Management
panel.

$(WORKSPACE_DIR), $(WORKSPACE_DIRECTORY), $(WORKSPACEDIR),
$(WORKSPACEDIRECTORY)

The location of the workspace directory.

Files and directories

$(PROJECT_FILENAME), $(PROJECT_FILE_NAME), $(PROJECT_FILE),
$(PROJECTFILE)

The filename of the currently compiled project.

$(PROJECT_NAME)

The name of the currently compiled project.

$(PROJECT_DIR), $(PROJECTDIR), $(PROJECT_DIRECTORY)

The common top-level directory of the currently compiled project.

$(ACTIVE_EDITOR_FILENAME)

The filename of the file opened in the currently active editor.

$(ACTIVE_EDITOR_DIRNAME)

The directory containing the currently active file (relative to the common top level
path).

$(ACTIVE_EDITOR_STEM)

The base name (without extension) of the currently active file.
47

http://www.codeblocks.org/docs/main_codeblocks_en.html
http://www.codeblocks.org/docs/main_codeblocks_en.html

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
$(ACTIVE_EDITOR_EXT)

The extension of the currently active file.

$(ALL_PROJECT_FILES)

A string containing the names of all files in the current project.

$(MAKEFILE)

The filename of the makefile.

$(CODEBLOCKS), $(APP_PATH), $(APPPATH), $(APP-PATH)

The path to the currently running instance of CodeBlocks.

$(DATAPATH), $(DATA_PATH), $(DATA-PATH)

The “shared” directory of the currently running instance of CodeBlocks.

$(PLUGINS)

The plugins directory of the currently running instance of CodeBlocks.

Build targets

$(FOOBAR_OUTPUT_FILE)

The output file of a specific target.

$(FOOBAR_OUTPUT_DIR)

The output directory of a specific target.

$(FOOBAR_OUTPUT_BASENAME)

The output file’s base name (no path, no extension) of a specific target.

$(TARGET_OUTPUT_DIR)

The output directory of the current target.

$(TARGET_OBJECT_DIR)

The object directory of the current target.

$(TARGET_NAME)

The name of the current target.

$(TARGET_OUTPUT_FILE)

The output file of the current target.

$(TARGET_OUTPUT_BASENAME)
48

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The output file’s base name (no path, no extension) of the current target.

$(TARGET_CC), $(TARGET_CPP), $(TARGET_LD), $(TARGET_LIB)

The build tool executable (compiler, linker, etc.) of the current target.

$(TARGET_COMPILER_DIR)

The build tool executable root directory, typically c:\iccv8cortex.

Language and encoding

$(LANGUAGE)

The system language in plain language.

$(ENCODING)

The character encoding in plain language.

Time and date

$(TDAY)

Current date in the form YYYYMMDD (for example, 20051228).

$(TODAY)

Current date in the form YYYY-MM-DD (for example 2005-12-28).

$(NOW)

Timestamp in the form YYYY-MM-DD-hh.mm (for example 2005-12-28-07.15).

$(NOW_L)

Timestamp in the form YYYY-MM-DD-hh.mm.ss (for example 2005-12-28-07.15.45).

$(WEEKDAY)

Plain-language day of the week (for example, “Wednesday”).

$(TDAY_UTC), $(TODAY_UTC), $(NOW_UTC), $(NOW_L_UTC),
$(WEEKDAY_UTC)

These are identical to the preceding types, but are expressed relative to UTC.

$(DAYCOUNT)

The number of the days passed since an arbitrarily chosen day zero (January 1,
2009). Useful as last component of a version/build number.

Random values

$(COIN)
49

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
This variable tosses a virtual coin (once per invocation) and returns 0 or 1.

$(RANDOM)

A 16-bit positive random number (0-65535).

Operating System Commands

The variable are substituted through the command of the operating system.

$(CMD_CP)

Copy command for files.

$(CMD_RM)

Remove command for files.

$(CMD_MV)

Move command for files.

$(CMD_MKDIR)

Make directory command.

$(CMD_RMDIR)

Remove directory command.
50

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Menu Reference: Build Options - Project

 Project Type - Enabled for PRO edition only. Allow you to build either regular
executable output or library file output.

 Execute Command Before Build - Execute user-defined commands before the
project is built. See below for a list of variables that C::B supports.

 Execute Command After Successful Build - Execute user-defined commands
after the project is successfully built. See below for a list of variables that C::B
supports.
51

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Build Options - Paths

For any path, if you do not specify a full path (i.e., a path that does not start with a \ or
a drive letter), then the path is relative to the Project directory (i.e., where the .cbp file
is).

 Include Paths - You may specify the directories where the compiler should
search for include files. You may specify multiple directories by separating the
paths with semicolons or spaces. If a path contains a space, then enclose it within
double quotes.

The compiler driver automatically adds c:\iccv8cortex\include and
c:\iccv8cortex\include\CMSIS to the include paths.

You may use the variable $(TARGET_COMPILER_DIR) to refer to the compiler
executable root, usually c:\iccv8cortex.

 Library Paths - You may specify the directories where the linker should search for
library files. You may specify multiple directories by separating the paths with
semicolons or spaces. If a path contains a space, then enclose it within double
quotes.

The compiler driver automatically adds c:\iccv8cortex\lib to the library
paths so you do not need to add it explicitly.

The compiler automatically links in a default startup file (see Startup File) and the
base library (see C Library General Description) with your program. The crt*.o
startup files and the library files must be located in the library directories.

 Output Directory - By default, CB put the output files in the project directory. You
can use this to specify another directory where the output files should go. If the
directory does not exist, CB will try to create it if possible.
52

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Build Options - Compiler

 Strict Checking - ANSI C evolves from the original K&R C. While the ANSI C
standard is a much tighter language than K&R C with more strict type checking,
etc., it still allows certain operations that are potentially unsafe. If selected, the
compiler warns about declarations and casts of function types without prototypes,
assignments between pointers to integers and pointers to enums, and
conversions from pointers to smaller integral types. It also warns about
unrecognized control lines, non-ANSI language extensions and source characters
in literals, unreferenced variables and static functions, and declaring arrays of
incomplete types.

This option should normally be ON and all warnings should be studied to ensure
that they are acceptable.

 ANSI C Portability Conformance Checking - If selected, the compiler warns
when your program exceeds some ANSI environmental limits, such as more than
257 cases in switch statements, or more than 512 nesting levels, etc. This does
not affect the operation of your program under our compilers, but may cause
problems with other ANSI C compilers.

 Accept Extensions - If selected, the compiler accepts the following extensions:

 C++ style comments, which treat everything up to the newline after the char-
acter pair // as comments.

 support for binary constants (such as 0b10101).

 C++ style anonymous union and struct; e.g., you can write

struct {
struct {

int a;
int b;

};
union {

int c;
int d;

} x;

and reference x.a, x.b, x.c and x.d

 Macro Define(s) - When you define macros, separate them by spaces or
semicolons. Each macro definition is in the form

name[:value] or name[=value]
53

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
For example:

DEBUG=1;PRINT=printf

defines two macros, DEBUG and PRINT. DEBUG has the value 1 by default and
PRINT is defined as printf. This is equivalent to writing

#define DEBUG 1
#define PRINT printf

in the source code. A common usage is to use conditional preprocessor directives
to include or exclude certain code fragments.

The C Preprocessor predefines a number of macros. See Predefined Macros.

 Macro Undefine(s) - same syntax as Macro Define(s) but with the opposite
meaning.

 Enable MISRA / Lint Checks - See MISRA / Lint Code Checking for explanations
of MISRA checks. Available in the PRO edition.

 Enable Cross Module Type Checking - detect inconsistence in the definitions
and declarations of global functions and data variables. Available in the PRO
edition.

Since the compiler encourages the use of function prototyping, this check is most
useful for detecting accidental misdeclarations of global variables, which can
cause your program to fail.

 Output File Format - select the choice of the output format. Usually a device
programmer requires simple Intel HEX or Motorola S19 format files. If you want
symbolic debugging, select one of the choices that include the debugging output.

 Enable 64-bit “double” - enabled for the PROFESSIONAL version. Specify the
size of the double data type as 64 bits. See Data Type Sizes. Note that this is
significantly slower and requires larger code space than 32-bit float.

 Optimizations - control the levels and types of optimizations. Currently, the
choices are

 Enable Global Optimizations - enabled for the PRO edition. This invokes
the MIO global optimizer and the 8-bit optimizations to improve on both code
size and execution speed of your programs.
54

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Build Options - Target

Address ranges are in the form <start>.<end>[:<start>.<end>]*. For example:

0x0.0x10000 ; one range
0x0.0x10000:0x11000.0x20000 ; two ranges

The compiler uses up to but not including the “end” address for memory allocation.
Typically the address ranges are not checked for overlaps. It’s up to you to ensure that
address ranges in the same memory space from within the same program area or
from different areas do not overlap. This includes any absolute memory regions used
by your programs using the .org assembly directive or one of the abs_address C
#pragma.

 Device Configuration - Select the target device. This primarily affects the
addresses that the linker uses for linking your programs. If your target device is
not on the list, select “Custom” and enter the relevant parameters described
below. If your device is similar to an existing device, then you should select the
similar device first and then switch to “Custom.”

 Flash Size - Size of the flash memory. Code, literals, interrupt vectors, etc. are
stored in flash memory.

 Flash Offset - Most flash memory starts at location 0. However, some devices
offset the flash memory at a different address.

 SRAM Size - Size of the internal SRAM.

 SRAM Offset - Starting address of the internal SRAM.

 Instruction Set - the Cortex-M profile instruction set.

 PRINTF Version - This radio group allows you to choose which version of the
printf your program is linked with. More features obviously use up more code
space. Please see Standard IO Functions for details:

 Small or Basic: only %c, %d, %x, %X, %u, and %s format specifier without
modifiers are accepted.

 Long: the long modifier. In addition to the width and precision fields, %ld, %lu,
%lx, and %lX are supported.

 Floating point: %e, %f and %g for floating point are supported.
55

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 full ftoa / dtoa - ftoa and dtoa are used for converting a 32-bit or 64-bit float
point to ASCII (64-bit float available in PRO edition only) and they are used by
printf to do the conversion. By default, a small and fast implementation of these
functions are used.

If you get an error at runtime, either an error code from ftoa/dtoa if you call
them directly, or an error message from printf (“# too small” or “# too
large”), then you can enable this checkbox and a larger and slower version of
ftoa/dtoa that can handle all valid floating point numbers will be used.

 Additional Libraries - You may use other libraries besides the standard ones
provided by the product. To use other libraries, copy the files to one of the library
directories and specify the names of the library files without the lib prefix and the
.a extension in the edit box. For example, rtos refers to the librtos.a library
file. All library files must end with the .a extension.

 Unused ROM Fill - fill the unused ROM locations with the specified integer
pattern.

 CRC - Specify an address in your device to store the CRC structure. The linker
computes the CRC for your program and stores it in this structure. You can
programmatically compute the CRC at run time to check against this value. See .
The CRC structure looks like:

unsigned address;
unsigned crc16;

<address> must not be used for other purpose. Typically you would specify the
address at the end of the flash memory.

 Non Default Startup - a startup file is always linked with your program (see
Startup File). In some cases, you may have different startup files based on the
project. This option allows you to specify the name of the startup file. If the
filename is not an absolute pathname, then the startup file must be in one of the
library directories.

 Other Options - this allows you to enter any linker command-line arguments. See
Linker Arguments.

56

C PREPROCESSOR
C Preprocessor Dialects

The C preprocessor is a standard C99 preprocessor.

Extensions

#pragma and _Pragma() are described in Pragmas and Extensions.

#region / #endregion are ignored by the preprocessor but are used by the
CodeBlocks IDE to allow manual code folding. These directives cannot improperly
overlay other control directives such as #if / #else / #endif. The same effect
can be achieved by using the pair

//{
//}

#warning is supported in addition to #error.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Predefined Macros

The product includes support for the following Standard C predefined macros.
“Current” refers to at the time of compilation:

 __DATE__ expands into a string literal of the current date.

 __FILE__ expands into a string literal of the current filename without the path
prefix.

 __LINE__ expands into an integer of the current line number (line numbers start
with 1)

 __STDC__ expands into the constant 1.

 __TIME__ expand into a string literal of the current time in the form “hh:mm:ss”.

The following ImageCraft specific macros are defined:

 __IMAGECRAFT__ expands into the constant 1. This is defined by the driver.

 __ICC_VERSION expands into an integer constant of the form 8xxyy, where
xxyy is the 4-digit minor version number, e.g. 80300. This is defined by the IDE.
You can use this to control version-specific code:

#if __ICC_VERSION > 80300
...

 __BUILD expands into an integer constant representing the build number. This is
defined by the IDE. The build number starts with one and increments each time a
build is performed. The build number is also written to the .mp map file.

Finally, a product-specific macro is defined by the driver:

Product Predefined Macro

ICCV8 for AVR _AVR

ICCV8 for Cortex _Cortex

ICCV7 for 430 _MSP430

ICC08 _HC08

ICC11 _HC11

ICCV7 for CPU12 _HC12
58

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
ICCV7 for ARM _ARM

ICCM8C _M8C

ICCV7 for Propeller _PROP

Product Predefined Macro
59

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Supported Directives

Long definitions can be broken into separate lines by using the line-continuation
character backslash at the end of the unfinished line.

Macro Definition

 #define macname definition

A simple macro definition. All references to macname will be replaced by its
definition.

 #define macname(arg [,args]) definition

A function-like macro, allowing arguments to be passed to the macro definition.

 #undef macname

Undefine macname as a macro. Useful for later on redefining macname to another
definition.

C99 allows variable arguments in a function-like macro definition.

Conditional Processing

In conditional processing directives (#if/#ifdef/#elif/#else/#endif), a line
group refers to the lines between the directive and the next conditional processing
directive. Conditional directives must be well formed. For example, #else, if it exists,
must be the last directive of the chain before the #endif. A sequence of conditional
directives form a group, and groups of conditional directives can be nested.

 defined(name)

Can only be used within the #if expression. Evaluate to 1 if name is a macro
name and 0 otherwise.

 #if <expr>

Conditionally process the line group if <expr> evaluates to non-zero. <expr>
may contain arithmetic/logical operators and defined(name). However, since
the C preprocessor is separate from the C compiler proper, it cannot contain the
sizeof or typecast operators.

 #ifdef name / #ifndef name

A shorthand for #if defined(name) and #if !defined(name),
respectively.

 #elif <expr>
60

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
If the previous conditions evaluate to zero and if <expr> evaluates to non-zero,
then the line group following the #elif is processed.

 #else

If all previous conditions evaluate to zero, then the line group following #else is
processed until the #endif.

 #endif

Ends a conditional processing group.

Others

 #include <file> or #include “file”

Process the content of the file.

 #line <line> [<“file”>]

Set the source line number and optionally the source file name.

 #error “message”

Emit message as an error message.

 #warning “message”

Emit message as a warning message. An ImageCraft extension.

 #pragma ...

_Pragma(...)

#pragma contains compiler-specific extensions. See Pragmas and Extensions.
61

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
String Literals and Token Pasting

A # preceding a macro argument in a macro definition creates a string literal. For
example,

#define str(x) #x

str(hello) then expands to the literal string hello. This is especially useful in
some inline asm commands. The C preprocessor does not expand macro names
inside strings. So the following would not work:

#define PORTB 5
...
asm(“in R0,PORTB”); // does not work as intended

The programmer’s intention is to expand PORTB inside the string to “5,” but this will not
work. Using string literal creation, it can be done like this:

#define PORTB 5
#define str(x) #x
#define strx(x)str(x)
...
asm(“in R0,” strx(PORTB));
// expands to asm(“in R0,5”);

If two string literals appear together, the C compiler treats it as a single string.

If two preprocessor tokens are separated by ##, then the preprocessor creates a
single token from them. For example:

foo ## bar

is treated the same as if you have written a single token foobar.
62

C IN 16 PAGES

Preamble
There are many good C tutorial books and websites. Google is your friend. In
particular, check out the “C FAQ” website.

This section gives a very brief introduction to C using our compiler tools. Some are
“good practices” that may help you to be more productive. This chapter contains our
opinions; obviously there are many other good ideas and good practices out there.
More importantly, this does not replace a good C tutorial or reference book.

C Standards

C “escaped” Bell Laboratories in the late 1970s into the commercial world. By the
early 1980s, there were many C compilers for mainframe, PC, and even embedded
processors (the more things change, the more they stay the same...). The original C
standard committee had the foresight to have as one of its overriding goals to “codify
existing practices as much as possible.” Consequently, the first C standard (C86)
works in basically the same ways as people were used to, with just a few more
keywords (const and volatile) thrown in. C’s relative simplicity helps here -- even
if you hit some sort of compatibility bugs, it is often a minor exercise to tweak the
programs to conform to new standards.

When ISO picked up the task of standardizing C for the international community, C86
by and large was accepted with some minor changes and became known as C89.
These are the base dialects that the ImageCraft compilers more or less conform to.
“More or less” because there are some small differences (i.e., we only support 64-bit
double on select targets, and 32-bit floating-point for other targets, and thus are non-
conforming). However, 99+% of the time, if it is in the C86/C89 language standard, it is
supported by our compilers.

C99 is the latest C standard. While some people pushed for making the new C a
proper subset of C++, sanity prevailed and C99 looks remarkably like C89, with the
addition of a few new keywords and data types (e.g., _bool, complex, long long,
long double, etc.). We may support C99 at a future date.

Order of Translation and the C Preprocessor

A C compiler consists of multiple programs that transform the C source files from one
format to another. First the C PREPROCESSOR performs macro expansion (e.g.,
#define), text inclusion (e.g., #include), etc. on the input. Then the compiler
proper translates the file into assembly code, which is then processed by the
assembler. The assembler translates the file into an object file. Finally, the linker
gathers all the object files and links them into a complete program.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

There are two observations about this process. First, the C preprocessor is separate
from the compiler proper and does textual processing only. There are caveats about
64

#define macros that arise from this. For example, in the macro definition, it is
advisable that you put parentheses around the macro arguments to prevent
unintended results:

#define mul1(a, b) a * b // bad practice
#define mul2(a, b) ((a) * (b)) // good practice

mul1(i + j, k);
mul2(i + j, k);

mul1 produces an unexpected result for the arguments, whereas mul2 produces the
correct result (of course, it is not a good idea to #define simple operations such as
single multiplication, but that is another subject). Second, C files are translated into
assembler files and are then processed by the assembler. In fact, C is sometimes
called a high-level assembler, since the amount of translation between C and
assembly is relatively small, compared to the more complex languages such as C++,
Java, FORTRAN, etc.

Source Code Structures; Header Files etc.

Your program must contain a function called main. It is a good practice to partition
your program into separate source files, each one containing functionally related
functions and data. In addition, when the program is more modular in structure, it is
faster to rebuild a project that has multiple smaller files rather than one big file. Using
the CodeBlocks IDE, add each file into the Project. Note that if you #include multiple
source files in a main file and only add the main file in the project manager, then
effectively you still have just one main file in your project and will not be getting the
benefits stated above.

You should put public function prototypes into public header files that are #include
by other files. Private functions should be declared with the static keyword and the
function prototypes should be declared either in a private header file or at the top of
the source file where they appear. Public header files should also contain any global
variable declarations.

Recall that a global variable should be defined in only one place but can be declared
in multiple places. A common practice is to put a conditional declaration such as the
following in a header file:

(header.h)
#ifndef EXTERN
#define EXTERN extern

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

#endif
65

EXTERN int clock_ticks;

Then in one and only one of the source files (say, main.c), you can write

#define EXTERN
#include “header.h”

In all other source files, you would just #include “header.h” without the
preceding #define. Since main.c has EXTERN defined to be nothing, then the
inclusion of header.h has the effect of defining the global variable clock_ticks. In
all other source files, the EXTERN is expanded as extern, thus declaring (but not
defining) clock_ticks as a global variable and allowing it to be referenced in the
source files.

Use of Global Variables vs. Locals and Function Arguments

Functions can communicate using either global variables or function arguments. On
some processors, it is better to use global variables; on others, it is better to use local
variables and arguments; and on some others, it does not matter at all. The following
summarizes the current ImageCraft compiler targets but should only be used as a
guideline. You should always balance optimization needs with program maintenance
needs.

Generally, using local variables is a better choice for the Atmel AVR, TI MSP 430 and
ARM targets. ImageCraft compilers for these targets automatically allocate local
variables to machine registers if possible and programs under these RISC processors
run much faster when machine registers are used. On the Motorola HC11 and HC12/
S12, it is a slight win to use local variables. On the HC08/S08, it probably does not
matter at all.

On some processors that we do not support, it is much better to use global variables.
For example, the 8051 is such an architecture.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Declaration
66

Everything in a C source file must be either a declaration or a statement. All variables
and type names must be declared before they can be referenced. Simple data
declarations are quite easy to read and to write:

[<storage class>] typename name;

Storage class is optional. It can be either auto, extern, or register. Not all
storage class names can appear in all declarations. The type name is sometimes a
simple type:

 int, unsigned int, unsigned, signed int

 short, unsigned short, signed short

 char, unsigned char, signed char

 float, double, and C99 added long double

 a typedef’ed name

 struct <tag> or union <tag>

What gets tricky is that there are three additional type modifiers: an array of ([]), a
function returning (()), and a pointer to (*), and combining them can make
declarations hard to write (and hard to read).

Reading a Declaration

You use the right-left rule, sort of like peeling an onion: you start with the name, and
read to the right until you can’t, then you move left until you can’t, and then move right
again. Nothing like a perverse example to demonstrate the point:

const int *(*f[5])(int *, char []);

Using the right-left rule, you get:

 locate f, then move right, so f is an array of 5...

 moving left, f is an array of 5 pointers...

 moving right, f is an array of 5 pointers to a function...

 continue to move right, f is an array of 5 pointers to a function with two arguments
(we can skip ahead and read the function prototype later)...

 moving left, f is an array of 5 pointers to function with two arguments that returns
a pointer to...

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

 moving left, f is an array of 5 pointers to function with two arguments that returns
a pointer to int...
67

 moving left for the last time, f is an array of 5 pointers to function with two
arguments that returns a pointer to const int.

You can of course also use the right-left rule to write declarations. In the example, the
type qualifier const is also used. There are two type qualifiers: const (object is read
only) or volatile (object may change in unexpected ways).

volatile is for decorating an object that may be changed by an asynchronous
process -- e.g., a global variable that is updated by an interrupt handler. Marking such
variables as volatile tells the compilers not to cache the accessed values.

Access Atomicity and Interrupts

For most 8-bit and some 16-bit microcontrollers, accessing a 16-bit object requires
two-byte-sized memory accesses. Accessing a 32-bit long would require 4 accesses,
etc. For performance reasons, the compiler does not disable interrupts when
performing multi-byte accesses. Most of the time, this works fine. However, there
could be a problem if you write something like this:

long var;
void somefunc() { if (var != 0) ... }
...
void ISR() { if (X) var = 0; else var++; ...}

In this example, somefunc() checks the value of a 32-bit variable that is updated in
an ISR. Depending on the when the ISR executes, it is possible that somefunc will
never detect var == 0 because a portion of the variable may change while it is being
examined.

To work around these problem, you should either not use a multi-byte variable in this
manner, or you must explicitly disable and enable interrupt around accesses to the
variable to guarantee atomic access.

Access atomicity may also affect expressions such as setting a bit in a global variable
-- depending on the device and where the global variable is allocated, setting a bit
may require multiple instructions. This would cause problems if the operation is
interrupted and the interrupt code checks or changes the same variable.

Pointers vs. Arrays

The semantics of C is such that the type of an array object is changed to the pointer to
the array element type very early on. This leads some people to believe incorrectly
that pointers and arrays are the “same thing.” While their types are often compatible,

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

they are not the same thing. For example, an array has storage space associated with
it, whereas you must initialize a pointer to point to some valid space before accessing
68

it.

Structure / Union Type

For whatever reasons, some beginners seem to have a lot of trouble with the struct
declaration. The basic form is

struct [tag] { member-declaration * } [variable list];

The following are valid examples of declaring a struct variable:

1) struct { int junk; } var1;

2) struct tag1 { int junk; } var2;

3) struct tag2;
struct tag2 { int junk; };
struct tag2 var3;

The tag is optional and is useful if you want to refer to the same struct type again
(for example, you can use struct tag1 to declare more variables of that type). In C,
within the same file, even if you have two identical-looking struct declarations, they
are different struct types. In the examples above, all of the structs have different
types, even though their struct types look identical.

However, in the case of separate files, this rule is relaxed: if two structs have the
same declaration, then they are equivalent. This makes sense, since in C, it is
impossible to have a single declaration to appear in more than one file. Declaring the
struct in a header file still means that a separate (but identical-looking) declaration
appears in each file that #include the header file.

Function Prototype

In the old days of C, it was sometimes acceptable to call a function without declaring it
first -- everything would work correctly anyway. However, with the ImageCraft
compilers, it is important to declare a function before referencing it, including the types
of the function arguments. Otherwise, it is possible that the compiler will not generate
the correct code. When you declare a function with a complete argument and return
type information, it’s called the function prototype of the function.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Expressions and Type Promotions
69

Semicolon Termination

The expression statement is one of the few statements in C that requires a
semicolon termination. The others are break, continue, return, goto, and do
statements. Sometimes you see things like:

#define foo blah blah;
...
void bar() { ... };

Those semicolons at the end are most likely extraneous and can possibly even cause
your program to fail subtly (to compile or to execute).

lvalue and rvalue

Every expression produces a value. If the expression is on the left-hand side of an
assignment, it is called an lvalue. In all other cases, an expression produces a rvalue.
An lvalue is either the name of a variable, an array element reference, a pointer
dereference, or a struct/union field member; everything else is not a valid lvalue. A
common question is why does the compiler complain about

((char *)pc)++

and the answer is that type cast does not produce an lvalue. Some compilers may
accept it as an extension, but it is not part of the standard C. This is an example of the
correct method of incrementing a cast variable:

unsigned pc;
...
pc = (unsigned)((char *)pc + 1);

Integer Constants

Integer constants are either decimal (default), octal (starting with 0), or hexadecimal
(0x or 0X). Our compilers support the extension of using 0b as a prefix for binary
constants. You can explicitly change the type of an integer constant by adding U/u, L/
l, or combinations of them. The type of an integer is the first type of each list in the
following table that can hold the value of the constant:

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
70

Expressions

Expression statements are where things happen. Every expression produces a value
and may contain side effects. In standard C, you can mix and match expressions of
different data types and, within certain rules, the compiler will convert the expressions
to the right type for you. Integer and floating-point expressions can be used together
and, in most cases, the expected things happen. A case where the unexpected may
happen is where the type of an expression solely depends on the types of its
operands and not how on they will be used. For example:

long_var = int_var1 * int_var2; // int multiply
long_var = (long)int_var1 * int_var2; // long multiply

The first multiplication is done as an integer multiply and not as a long multiply. If you
want long multiply, at least one of the operands must have the type long, as seen in
the second example. This also applies to assigning to floating-point variables, etc. as
well.

Another point of note is that the C standard says that operands are promoted to
equivalent types before the operation is done. In particular, an integer expression
must be promoted to at least int type if its type is smaller than an int type. However,
the “as-if” rule says that the promotion does not need to physically occur if the result is
the same. Our compilers will try to optimize the byte-sized operations whenever
possible. Some expressions are more difficult to optimize, especially if they produce
an intermediate value. For example,

Table 1:

Suffix Decimal Constant Octal / Hex Constant

none int
long int

int
unsigned int
long int
unsigned long int

u or U unsigned int
unsigned long int

unsigned int
unsigned long int

l or L long int long int
unsigned long int

both u/U and l/L unsigned long int unsigned long int

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

char *p;
...
71

... *p++...

The compiler may not be as optimal, since *p is a temporary value that needs to be
preserved.

Operators

C has a rich set of operators, including bitwise operators that make handling IO
registers easy. There is no “logical” or “boolean” type per se, so any non-zero value is
taken as “true.” You may intermix any operators, including logical, bit-wise, etc., in an
expression. The following lists the operators from high to lower precedence. Within
each row, the operators have the same precedence.

Table 2: Operator Precedence and Associativity

Operators Associativity

() function call
[] array element
-> structure pointer field dereference
. structure field reference

left to right

! logical not
~ one’s complement
++ pre/post increment
-- pre/post decrement
+ unary plus
- unary minus
* pointer dereference
& address of
(type) type cast
sizeof size of type

right to left

* multiply
/ divide
% remainder

left to right

+ addition
- subtraction

left to right

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Table 2: Operator Precedence and Associativity
72

Macro Abuse

Some people use #define to define “better names” for some of the operators -- for
example, EQ instead of ==, BITAND instead of &, etc. This practice is generally not a
good idea, since it only serves to create a single-person dialect of the language,
making the program more difficult to maintain and be read by other people.

Operator Gotchas

<< left shift

>> right shift a
left to right

< less than
<= less than or equal to
> greater than
>= greater than or equal to

left to right

== equal to
!= not equal to

left to right

& bitwise and left to right

^ bitwise exclusive or left to right

| bitwise or left to right

&& short-circuited logical and left to right

|| short-circuited logical or left to right

?: conditional (the only 3-operand operator in
C)

right to left

= += -= *= /= %= &= ^= |= <<= >>=
Assignment operators

right to left

, comma operator left to right

a.) Standard C does not define whether a right shift is arithmetic or logical. All
ImageCraft compilers use arithmetic right shift for signed operands and logical
right shift for unsigned operands.

Operators Associativity

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

 Incorrectly using = instead of ==. Rather than donning the sin of “macro abuse,”
write carefully or use a tool such as lint or splint to catch errors like this.
73

 Bitwise operators have higher precedence than logical operators. To many
programmers, C has the ideal mix of high-level constructs with low-level
accessibility. However, this is one case where even the inventors of C admit that
this is a misfeature. It means that you have to write:

if ((flags & bit1) != 0 && ...

with an “extra” set of parentheses to get the semantics correct. Unfortunately, the
power of backward compatibility is such that even C++ has to preserve this
mistake.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Statements
74

In the following, if-body, while-body, ...etc. are synonymous to C statements.

Expression Statement

[label:] [expression];

See Expressions and Type Promotions for discussion on expressions. An empty
semicolon by itself is a null expression statement.

Compound Statement

{ [statement]* }

A compound statement is a sequence of zero or more statements enclosed in a set of
{}. Notably, local declarations are only valid immediately after a { and before any
executable statement, so sometimes a {} is introduced just for that purpose.

If Statement

if (<expr>) if-body [else else-body]

If <expr> evaluates to non-zero, then it executes the if-body. Otherwise, it
executes the else-body if it exists. There is no “dangling-else” problem, as an else
keyword is always associated with the nearest preceding if keyword.

While Statement

while (<expr>) while-body

Executes the while-body as long as the <expr> evaluates to non-zero. Note that
our compilers compile this to something similar to

goto bottom
loop_top: <while-body>
bottom: if <expr> goto loop_top

While not as straightforward as the obvious test-at-the-top translation, this sequence
executes n+2 branches for a loop that executes n times, vs. 2n+1 branches for the
obvious translation.

For Statement

for ([<expr1>] ; <expr>; <expr2>) for-body

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Executes the for-body as long as <expr> evaluates to non-zero. <expr2> is
executed after the for-body. <expr1> and <expr2> are places where you usually
75

would put initial expressions and loop increments respectively.

Do Statement

do do-body while (<expr>);

Executes do-body at least once and, if <exp> evaluates to non-zero, repeat the
process.

Break Statement

break;

Valid only inside a loop body or inside a switch statement. It causes control to fall
outside of the loop or the switch. Inside a switch, execution falls through to the next
case, unless it is terminated by a break statement.

Continue Statement

continue;

Valid only inside a loop body. It causes control to go to the loop test. Inside a for
statement, it will skip the third expression normally executed.

Goto Statement

goto label;

Transfer control flow to label. There is no restriction on where label is located as
long as it is a valid label inside the same function. In other words, while usually not a
good idea, it is acceptable to jump into the middle of a loop or other “bad” places.

Return Statement

return [<expr>];

Transfer control flow back to the calling function and optionally return the value of the
specified expression.

Switch Statement

switch (<int expr>) switch-body

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M

Evaluates the integer expression and transfers control to the case label inside the
switch-body having the same value as the expression. If there is no match and there
76

is a default label, then control is transferred to the default case. Note that the switch-
body is commonly written as

{ case <int>: [expression ;] * ... default: [expression;]* }

but this format is not required by the C language. A case label and a default label can
only appear inside a switch body. Another major gotcha is that execution falls through
to the next case, unless it is terminated by a break statement.

C LIBRARY AND STARTUP FILE
C Library General Description

The standard C defines a set of library functions that your programs may use. To use
a library function, the source file that references the function must include the relevant
header file where it is declared. Note that adding the header file to the CodeBlocks
IDE’s project file list is for documentary purpose only and you still must use the C
Preprocessor directive to include the header file in your source code. For example,

#include <ctype.h>
...
int c;
...
if (isalpha(c)) ...

The compiler automatically links in the library file when it builds your program. In
addition to the standard C library functions, the library file also contains other helper
functions used by compiler generated code and other functions.

Cortex-M Specific Functions

Bitband alias memory is defined in the Cortex-M3 architecture (but not necessarily
implemented by all Cortex-M3 devices) that provide fast bit access to memory or
peripheral registers in certain memory regions. A single bit access becomes a word
load or store, which is much faster and simpler than accessing a single bit.

bitband.h defines the following macros

'a' is the address, e.g. &GPIOC->BRR, or &external_var

'b' is the bit number and must be between 0 and 31 (inclusive)

 _BITBAND_CLEAR(a, b) clears the bit at address

 _BITBAND_SET(a, b) sets the bit at address

 _BITBAND_TOGGLE(a, b) toggles the bit at address

 _BITBAND_READ(a, b) returns the bit at address

You must supply a valid address as it is not checked against the valid bitband memory
region addresses. You must not use these macros on devices that do not have
bitband alias memory.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Overriding a Library Function

You can write your own version of a library function. For example, you can implement
your own putchar() function towrite to an LCD device. The library source code is
provided so that you can use it as a starting point. You can override the default library
function using one of the following methods:

 You can define your function in one of your project files. The compiler will use your
version and not the one in the library. Note that in this case, unlike a library
module, your function will always be included in the final program output even if
you do not actually call the function.

 You may create your own library. See Librarian for details.

 You may replace the default library version with your own. Note that when you
upgrade to a new version of the product, you will need to make this replacement
again. See Librarian for details on how to replace a library module.
78

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Startup File

The linker links the startup file (default crtcortex.o)before your files, and links the
standard library libccortex.a with your program. The startup file defines a global
symbol __start, which is the starting point of your program.

The Startup file:

1. Initializes thestack pointerCopies the initialized data from the idata area to the
data area.

2. Initializes the bss area to zero.

3. Calls the user main routine.

4. Defines the entry point for exit, which is defined as an infinite loop. If main ever
returns, it will enter exit and gets stuck there (so much for “exit”).

The first two entries of the reset vector (usually at location 0) are also defined in the
startup file. The first entry is the stack pointer value after a reset and the second entry
is the program entry address. The stack pointer is set to the top of the SRAM via the
symbol init_sp defined by the IDE and the program entry is set to __start.
79

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Interrupt Vector Table

Other than the reset vector, which is defined in the Startup file, the rest of the interrupt
vectors are defined in the file
c:\iccv8cortex\libsrc.cortex\cortex_vector.s. To use this unmodified,
just add the file to your project file list. For best practices, you should define an
interrupt entry for all interrupts.

Most silicon vendors provide a C interface layer to the interrupt vectors in their CMSIS
file set so you may modify the interrupt handler chain without touching an assembly
file such as cortex_vectors.s.

If you do need to modify cortex_vectors.s, make a copy of the file in your project
directory and add it to your project file list. Do not use the copy in the
libsrc.cortex directory directly, as a fresh install of the compiler will wipe out your
changes.

cortex_vector.s calls the function _Default_Handler as a default handler.
This function just does a function return and is defined in the file
cortex_default_handler.s (source file available in
c:\iccv8cortex\libsrc.cortex\)and is included in the library
libccortex.a. If you want to change its behavior, just define a function with the
same name (if you write it in C, then the prototype is

void Default_Handler(void);

without the _ prefix).
80

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Header Files

The following standard C header files are supported. Per C rules, you will only get a
warning from the compiler if you use a library function but do not #include the header
file (which contains the function prototype). However, your program may fail at runtime
since the compiler must know about the function prototype in order to generate correct
code in all cases.

assert.h - assert(), the assertion macros.

ctype.h - character type functions.

float.h - floating-point characteristics.

limits.h - data type sizes and ranges.

math.h - floating-point math functions.

stdarg.h - support for variable argument functions.

stddef.h - standard defines.

stdio.h - standard IO (input/output) functions.

stdlib.h - standard library including memory allocation functions.

string.h - string manipulation functions.
81

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Character Type Functions

The following functions categorize input according to the ASCII character set. Use
#include <ctype.h> > before using these functions.

 int isalnum(int c)

returns non-zero if c is a digit or alphabetic character.

 int isalpha(int c)

returns non-zero if c is an alphabetic character.

 int iscntrl(int c)

returns non-zero if c is a control character (for example, FF, BELL, LF).

 int isdigit(int c)

returns non-zero if c is a digit.

 int isgraph(int c))

returns non-zero if c is a printable character and not a space.

 int islower(int c)

returns non-zero if c is a lower-case alphabetic character.

 int isprint(int c)

returns non-zero if c is a printable character.

 int ispunct(int c)

returns non-zero if c is a printable character and is not a space or a digit or an
alphabetic character.

 int isspace(int c)

returns non-zero if c is a space character, including space, CR, FF, HT, NL, and VT.

 int isupper(int c)

returns non-zero if c is an upper-case alphabetic character.

 int isxdigit(int c)

returns non-zero if c is a hexadecimal digit.

 int tolower(int c)

returns the lower-case version of c if c is an upper-case character. Otherwise it
returns c.
82

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 int toupper(int c)

returns the upper-case version of c if c is a lower-case character. Otherwise it
returns c.
83

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Floating-Point Math Functions

The following floating-point math routines are supported. You must #include
<math.h> before using these functions.

 float asinf(float x)

returns the arcsine of x for x in radians.

 float acosf(float x)

returns the arccosine of x for x in radians.

 float atanf(float x)

returns the arctangent of x for x in radians.

 float atan2f(float y, float x)

returns the angle whose tangent is y/x, in the range [-pi, +pi] radians.

 float ceilf(float x)

returns the smallest integer not less than x.

 float cosf(float x))

returns the cosine of x for x in radians.

 float coshf(float x)

returns the hyperbolic cosine of x for x in radians.

 float expf(float x)

returns e to the x power.

 float exp10f(float x)

returns 10 to the x power.

 float fabsf(float x)

returns the absolute value of x.

 float floorf(float x)

returns the largest integer not greater than x.

 float fmodf(float x, float y)

returns the remainder of x/y.

 float frexpf(float x, int *pexp)
84

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
returns a fraction f and stores a base-2 integer into *pexp that represents the value
of the input x. The return value is in the interval of [1/2, 1) and x equals f *
2**(*pexp).

 float froundf(float x)

rounds x to the nearest integer.

 float ldexpf(float x, int exp)

returns x * 2**exp.

 float logf(float x)

returns the natural logarithm of x.

 float log10f(float x)

returns the base-10 logarithm of x.

 float modff(float x, float *pint)

returns a fraction f and stores an integer into *pint that represents x. f + (*pint)
equal x. abs(f) is in the interval [0, 1) and both f and *pint have the same sign
as x.

 float powf(float x, float y))

returns x raised to the power y.

 float sqrtf(float x))

returns the square root of x.

 float sinf(float x)

returns the sine of x for x in radians.

 float sinhf(float x)

returns the hyperbolic sine of x for x in radians.

 float tanf(float x))

returns the tangent of x for x in radians.

 float tanhf(float x)

returns the hyperbolic tangent of x for x in radians.
85

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Standard IO Functions

Since standard file IO is not meaningful for an embedded microcontroller, much of the
standard stdio.h content is not applicable. Nevertheless, some IO functions are
supported.

Use #include <stdio.h> before using these functions. You will need to initialize
the output port. The lowest level of IO routines consists of the single-character input
(getchar) and output (putchar) routines. You will need to implement these routines
since they are specific to the target device. We provide example implementations and
for most cases, you just need to copy the correct example file to your project. See the
function descriptions below.

Once you implement the low level functions, you do not need to make modifications to
the high-level standard IO functions such as printf, sprintf, scanf, etc.

Using printf on Multiple Output Devices

It is very simple to use printf on multiple devices. Your putchar() function can
write to different devices depending on a global variable. Then you change the global
variable whenever you want to use a different device. You can even implement a
version of printf that takes some sort of device number argument by using the
vfprintf() function, described below.

List of Standard IO Functions

 int getchar(void)

returns a character. You must implement this function as it is device-specific.
There are example functions that use the UART registers in the directory
c:\iccv8cortex\examples.cortex\ with file names getchar???.c. You
may make a copy of the file that matches your target and make any modifications
if needed and add it to your project file list.

 int printf(char *fmt, ..)

printf prints out formatted text according to the format specifiers in the fmt
string. NOTE: printf is supplied in three versions, depending on your code
size and feature requirements (the more features, the higher the code size):

 Basic: only %c, %d, %x, %u, %p, and %s format specifiers without modifi-
ers are accepted.

 Long: the long modifiers %ld, %lu, %lx are supported, in addition to the
width and precision fields.
86

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 Floating-point: all formats, including %f for floating-point, are supported.

The code size is significantly larger as you progress down the list. Select the
version to use in the Build Options - Target dialog box.

The format specifiers are a subset of the standard formats:

%[flags]*[width][.precision][l]<conversion character>

The flags are:

- alternate form. For the x or X conversion, a 0x or 0X is generated.
For the floating-point conversions, a decimal point is generated even if the
floating-point value is exactly an integer.

- (minus) - left-align the output

+ (plus) - add a '+' + sign character for positive integer output

' ' (space)- use space as the sign character for positive integer

0 - pad with zero instead of spaces

The width is either a decimal integer or *, denoting that the value is taken from the
next argument. The width specifies the minimal number of characters that will be
printed, left or right aligned if needed, and padded with either spaces or zeros,
depending on the flag characters.

The precision is preceded by a '.' . and is either a decimal integer or *, denoting
that the value is taken from the next argument. The precision specifies the
minimal number of digits for an integer conversion, the maximum number of
characters for the s-string conversion, and the number of digits after the decimal
point for the floating-point conversions.

The conversion characters are as follows. If an l (letter el) appears before an
integer conversion character, then the argument is taken as a long integer.

d - prints the next argument as a decimal integer

o - prints the next argument as an unsigned octal integer

x - prints the next argument as an unsigned hexadecimal integer

X - the same as %x except that upper case is used for A-F

u - prints the next argument as an unsigned decimal integer

p - prints the next argument as a void pointer. The value printed is the
unsigned hexadecimal address, prefixed by 0x.

s - prints the next argument as a C null-terminated string
87

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
c - prints the next argument as an ASCII character

f - prints the next argument as a floating-point number in decimal notation
(e.g., 31415.9)

e - prints the next argument as a floating-point number in scientific notation
(e.g., 3.14159e4)

g - prints the next argument as a floating-point number in either decimal or
scientific notation, whichever is more convenient.

For floating point output, please see the description for ftoa/dtoa in Standard
Library And Memory Allocation Functions.

 int putchar(char c)

prints out a single character. You must implement this function, as it is device-
specific. There are example functions that use the UART registers in the directory
c:\iccv8cortex\examples.cortex\ with file names putchar???.c. You
may make a copy of the file that matches your target and make any modifications
if needed and add it to your project file list.

The provided examples use a global variable named _textmode to control
whether the putchar function maps a \n character to the CR-LF (carriage return
and line feed) pair. This is needed if the output is to be displayed in a text terminal.
For example,

extern int _textmode; // this is defined in the library
...
_textmode = 1;

 int puts(char *s)

prints out a string followed by NL.

 int sprintf(char *buf, char *fmt)

prints a formatted text into buf according to the format specifiers in fmt. The
format specifiers are the same as in printf().

 int scanf(char *fmt, ...)

reads the input according to the format string fmt. The function getchar() is
used to read the input. Therefore, if you override the function getchar(), you
can use this function to read from any device you choose.
88

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Non-white white-space characters in the format string must match exactly with the
input and white-space characters are matched with the longest sequence
(including null size) of white-space characters in the input. % introduces a format
specifier:

 [l] long modifier. This optional modifier specifies that the matching argu-
ment is of the type pointer to long.

 d the input is a decimal number. The argument must be a pointer to a
(long) int.

 x/X the input is a hexadecimal number, possibly beginning with 0x or 0X.
The argument must be a pointer to an unsigned (long) int.

 p the input is a hexadecimal number, possibly beginning with 0x or 0X.
The argument must be cast to a pointer to a “void pointer,” e.g., void **.

 u the input is a decimal number. The argument must be a pointer to an
unsigned (long) int.

 o the input is a decimal number. The argument must be a pointer to an
unsigned (long) int.

 c the input is a character. The argument must be a pointer to a character.

 int sscanf(char *buf char *fmt, ...)

same as scanf except that the input is taken from the buffer buf.

 int vprintf(char *fmt, va_list va);) - same as printf except that
the arguments after the format string are specified using the stdarg mechanism.
89

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Standard Library And Memory Allocation Functions

The Standard Library header file <stdlib.h> defines the macros NULL and
RAND_MAX and typedefs size_t and declares the following functions. Note that
you must initialize the heap with the _NewHeap call before using any of the memory
allocation routines (calloc, malloc, and realloc).

 int abs(int i)

returns the absolute value of i.

 int atoi(char *s)

converts the initial characters in s into an integer, or returns 0 if an error occurs.

 double atof(char *s)

converts the initial characters in s into a double and returns it.

 long atol(char *s)

converts the initial characters in s into a long integer, or returns 0 if an error
occurs.

 void *calloc(size_t nelem, size_t size)

returns a memory chunk large enough to hold nelem number of objects, each of
size size. The memory is initialized to zeros. It returns 0 if it cannot honor the
request.

 char *dtoa(double f, int *status)

char *ftoa(double f, int *status)

converts a 32-bit (ftoa) or 64-bit (dtoa) floating-point number to the its ASCII
representation. dtoa exists in PRO edition only. It returns a static buffer of
approximately 50 chars.

There are two versions of this function. The default is smaller and faster but does
not support the full range of the floating point input. If the input is out of range,
*status is set to the constant _FTOA_TOO_LARGE or _FTOA_TOO_SMALL,
defined in stdlib.h, and 0 is returned. Otherwise, *status is set to 0 and the
buffer is returned.

If you encounter the error, you can enable the larger and slower version that can
handle all valid range by enabling an option. See Build Options - Target.

As with most other C functions with similar prototypes, *status means that you
must pass the address of a variable to this function. Do not declare a pointer
variable and pass it without initializing its pointer value.
90

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 void exit(status)

terminates the program. Under an embedded environment, typically it simply
loops forever and its main use is to act as the return point for the user main
function.

 void free(void *ptr)

frees a previously allocated heap memory.

 char *ftoa(float f, int *status)

see dtoa above.

 void itoa(char *buf, int value, int base)

converts a signed integer value to an ASCII string, using base as the radix. base
can be an integer from 2 to 36.

 long labs(long i)

returns the absolute value of i.

 void ltoa(char *buf, long value, int base)

converts a long value to an ASCII string, using base as the radix.

 void utoa(char *buf, unsigned value, int base)

same as itoa except that the argument is taken as unsigned int.

 void ultoa(char *buf, unsigned long value, int base)

same as ltoa except that the argument is taken as unsigned long.

 void *malloc(size_t size)

allocates a memory chunk of size size from the heap. It returns 0 if it cannot
honor the request.

 void _NewHeap(void *start, void *end)

initializes the heap for memory allocation routines. malloc and related routines
manage memory in the heap region. See Program Areas for information on
memory layout. A typical call uses the address of the symbol _bss_end+1 as
the “start” value. The symbol _bss_end defines the end of the data memory
used by the compiler for global variables and strings.
extern char _bss_end;
unsigned start = ((unsigned)&_bss_end+4) & ~4;
_NewHeap(start, start+200); // 200 bytes heap
91

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Be aware that for a microcontroller with a small amount of data memory, it is often
not feasible or wise to use dynamic allocation due to its overhead and potential for
memory fragmentation. Often a simple statically allocated array serves one’s
needs better.

 int rand(void)

returns a pseudo-random number between 0 and RAND_MAX.

 void *realloc(void *ptr, size_t size)

reallocates a previously allocated memory chunk with a new size.

 void srand(unsigned seed)

initializes the seed value for subsequent rand() calls.

 long strtol(char *s, char **endptr, int base)

converts the initial characters in s to a long integer according to the base. If base
is 0, then strtol chooses the base depending on the initial characters (after the
optional minus sign, if any) in s: 0x or 0X indicates a hexadecimal integer, 0
indicates an octal integer, with a decimal integer assumed otherwise. If endptr is
not NULL, then *endptr will be set to where the conversion ends in s.

 unsigned long strtoul(char *s, char **endptr, int base)

is similar to strtol except that the return type is unsigned long.
92

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
String Functions

The following string functions and macros are declared in string.h:

Macros and Types

 NULL is the null pointer, defined as value 0.

 size_t is the unsigned type that can hold the result of a sizeof operator.

Functions

 void *memchr(void *s, int c, size_t n)

searches for the first occurrence of c in the array s of size n. It returns the address
of the matching element or the null pointer if no match is found.

 int memcmp(void *s1, void *s2, size_t n)

compares two arrays, each of size n. It returns 0 if the arrays are equal and
greater than 0 if the first different element in s1 is greater than the corresponding
element in s2. Otherwise, it returns a number less than 0.

 void *memcpy(void *s1, const void *s2, size_t n)

copies n bytes starting from s2 into s1.

 void *memmove(void *s1, const void *s2, size_t n)

copies s2 into s1, each of size n. The routine works correctly even if the inputs
overlap. It returns s1.

 void *memset(void *s, int c, size_t n)

stores c in all elements of the array s of size n. It returns s.

 char *strcat(char *s1, const char *s2)

concatenates s2 onto s1 . It returns s1.

 char *strchr(const char *s, int c)

searches for the first occurrence of c in s, including its terminating null character.
It returns the address of the matching element or the null pointer if no match is
found.

 int strcmp(const char *s1, const char *s2)

compares two strings. It returns 0 if the strings are equal, and greater than 0 if the
first different element in s1 is greater than the corresponding element in s2.
Otherwise, it returns a number less than 0.
93

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 int strcoll(const char *s1, const char *s2)

compares two strings using locale information. Under our compilers, this is exactly
the same as the strcmp function.

 char *strcpy(char *s1, const char *s2)

copies s2 into s1. It returns s1.

 size_t strcspn(const char *s1, const char *s2)

searches for the first element in s1 that matches any of the elements in s2. The
terminating nulls are considered part of the strings. It returns the index in s1
where the match is found.

 size_t strlen(const char *s)

returns the length of s. The terminating null is not counted.

 char *strncat(char *s1, const char *s2, size_t n)

concatenates up to n elements, not including the terminating null, of s2 into s1. It
then copies a null character onto the end of s1. It returns s1.

 int strncmp(const char *s1, const char *s2, size_t n)

is the same as the strcmp function except it compares at most n characters.

 char *strncpy(char *s1, const char *s2, size_t n)

is the same as the strcpy function except it copies at most n characters.

 char *strpbrk(const char *s1, const char *s2)

does the same search as the strcspn function but returns the pointer to the
matching element in s1 if the element is not the terminating null. Otherwise, it
returns a null pointer.

 char *strrchr(const char *s, int c)

searches for the last occurrence of c in s and returns a pointer to it. It returns a
null pointer if no match is found.

 size_t strspn(const char *s1, const char *s2)

searches for the first element in s1 that does not match any of the elements in s2.
The terminating null of s2 is considered part of s2. It returns the index where the
condition is true.

 char *strstr(const char *s1, const char *s2)
94

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
finds the substring of s1 that matches s2. It returns the address of the substring in
s1 if found and a null pointer otherwise.

 char *strtok(char *s1, const char *delim)

splits s1 into tokens. Each token is separated by any of the characters in delim.
You specify the source string s1 in the first call to strtok. Subsequent calls to
strtok with s1 set to NULL will return the next token until no more token is
found, and strtok returns NULL.

strtok modifies the content of s1 and pointers into s1 are returned as return
values.
95

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Variable Argument Functions

<stdarg.h> provides support for variable argument processing. It defines the
pseudo-type va_list and three macros:

 va_start(va_list foo, <last-arg>)

initializes the variable foo.

 va_arg(va_list foo, <promoted type>)

accesses the next argument, cast to the specified type. Note that type must be
a “promoted type,” such as int, long, or double. Smaller integer types such as
char are invalid and will give incorrect results.

 va_end(va_list foo)

ends the variable argument processing.

For example, printf() may be implemented using vfprintf() as follows:

#include <stdarg.h>

int printf(char *fmt, ...)
 {
 va_list ap;

 va_start(ap, fmt);
 vfprintf(fmt, ap);
 va_end(ap);
 }
96

PROGRAMMING THE CORTEX-M
As the 7th major revision of the ARM architecture, the ARM Cortex-M is highly tuned
to the needs of the C compiler. The base instruction set is Thumb-2, a mixture of 16-
bit and 32-bit instructions optimized for performance, code density and power
consumption.

ARM’s documentation is available on the site http://infocenter.arm.com. The
most relevant documents are the ARM Cortex M (M0, M3) Architecture Reference
Manuals. Silicon vendors have the device-specific data sheet and user manuals at
their sites.

With Cortex-M, you can write your entire program, including interrupt handlers, in C.
All is needed in most cases is just a small piece of code in the Startup File to set up
the C environment, before jumping to the user main() function.

Customizing a New Project

Typically, you need to do the following tasks when you start a new project:

 Modify the interrupt vectors if needed. Also see Interrupt Vector Table.

The default interrupt vectors set all interrupts to use the _Default_Handler
routine (except for the System Tick handler), which just does a BX LR return. The
System Tick handler SysTick_Hanlder increments a global variable named
current_time. To fully use this handler, you need to set up the system clock
and set the System Tick to trigger periodically. A typical System Tick period is 10
ms.

Both Default_Handler and SysTick_Handler are defined in the library file
libccortex.a, and thus can be overridden by writing your own versions in your
project files.

To modify the vector table, copy
c:\iccv8cortex\libsrc.cortex\cortex_vector.s to your project
directory and add it to the project file list. Then modify the entries as needed.

 Write code to initialize the System Clock and other peripherals as needed.

At the minimum, you will need to initialize the clock system to suit your setup (e.g.,
whether to use PLL or external RC, etc.) For any microcontroller peripherals that
you use, from the UART to USB, you must write code to initialize the IO registers.

Fortunately, the silicon vendor for your device almost certainly has provided
source code to perform these functions, so you can simply download them from
the respective websites and then add them to your project and modify as needed.

http://infocenter.arm.com

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The vendor code is (usually) compatible with the CMSIS (covered in next section).
What this means is that the customers have a good chance of using the same
source code example regardless of which development environment they use.

You can, of course, forgo CMSIS and write your own code. There may be a small
performance gain for doing so.
98

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
CMSIS (Cortex Microcontroller Software Interface Stan-
dard)

To ensure ease of transitions among different Cortex-M devices from different silicon
vendors and different software providers, ARM has proposed the CMSIS (Cortex
Microcontroller Software Interface Standard). It’s a thin layer that sits between the
hardware and the user’s software, providing a uniform way to access device-specific
instructions and features.

ARM provides the base header files and source files. The header files are located in
c:\iccv8cortex\include\CMSIS\ and the directory is in the default search list
for include files (along with c:\iccv8cortex\include\).

Silicon vendors usually provide CMSIS-compatible source and header files specific to
their devices on their websites. As one of the challlenges in writing embedded
programs is accessing the device’s peripheral and their functions, having these
resource make the task easier.

CMSIS Usage Summary

 We provide some vendor CMSIS files in
c:\iccv8cortex\examples.cortex\Libraries\<vendor name>.

If you do not see them there, search on the web and download the vendor-specific
CMSIS files and install them on your system. Please let us know at
support@imagecraft.com and we will consider adding them to our installer.

Note that since the CMSIS files are large and there are numerous Cortex-M
variants, we will not be able to include too many vendor CMSIS files in our
installer.

 Create a CB project as usual.

 Add c:\iccv8cortex\examples.cortex\CMSIS\core_cm3.c to your
project file list.

 Add the vendor-specific directory to the Project->Build Options->Paths->Include
Path, e.g.

c:\arm-dev\NXP\LPC17xx\

if you have installed NXP’s CMSIS files under c:\arm-dev\NXP

 You do not need to add the ARM generic Cortex CMSIS header file path (which is
c:\iccv8cortex\include\CMSIS\), since the compiler adds that
automatically, along with c:\iccv8cortex\include\.
99

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 Add c:\iccv8cortex\libsrc.cortex\cortex_vectors.s to your project
file list if you do not need to modify it. Otherwise,

 copy c:\iccv8cortex\libsrc.cortex\cortex_vectors.s to your project
directory and add it to your project file list. Do not use the copy in the
libsrc.cortex directory directly, as a fresh install of the compiler will wipe out
your changes. Modify as needed. In particular, you should specify handlers for all
device-specific interrupts after the “SysTicks” interrupt entry. Remember to use
the “.paddr ISR_name” directive.

 Add the vendor’s CMSIS library source to your project. You should only add the
files you actually use to avoid adding unneeded code to your program.
100

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Cortex-M Compiler-Specific Information

Optimizations

The compiler generates 16-Bit Thumb 2 instructions whenever possible. For example,
this means that it may use the “set condition code” qualifier (.s suffix) even if the
condition code is not needed, since this is sometimes needed to force 16-bit encoding
outside of the IT Block. It also avoids using explicit “compare with zero” if possible if
the condition code can be set as a side effect using a prior instruction.

{Not Yet Implemented} While we generally advocate the use of bit macros instead of
bitfield (see Bit Twiddling), the Cortex-M compiler is fully optimized to use the Thumb-
2 bitfield instructions, and you should use bitfield for the best code with the Cortex-M
compiler.

Cortex-M3 is architected to have the bit-band alias memory region so that bitfield
access can be done using a single load or store instruction, rather than the more
complex load and extract or insert and store sequences. These can be accessed
through the macros defined in bitband.h. See C Library General Description.

Unlike the 32-bit ARM instruction set, Cortex-M3’s Thumb-2 instruction does not
support conditional execution on all instructions. It does has the IT block instruction
that can conditionally execute up to 4 following instructions. The compiler generates
optimal instructions for bodies of if and else blocks to take advantage of the IT blocks
as well as the cbz/cbnz compare and branch instructions.

Literal Pools

Thumb-2 instructions cannot encode arbitrary literals and constants, although they
can encode a large number of values within the instruction using some unusual
encoding scheme (for example, Thumb-2 can encode any immediate value that is up
to 8 bits long, starting in any bit position). The most common method of addressing
non-encodable constants is to put them in a “literal pool” and load the pool into a
register before use. The C compiler generates the function’s literal pool right after the
function body so that the constants are usually within reach of the PC relative load.
For example:

_some_func::
...
ldr R0,LIT_some_func+4
...
LIT_some_func:
.long 0
.long 0xDEADBEEF
101

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The assembler translates the label reference into a PC relative index operand.

Since the reach of the PC relative load is +/-4095 bytes, it’s possible that the constant
may become out of reach due to the size of the function. The compiler generates
other (and longer) code sequences in that case.

Assembly Directives

The assembler is described here (Assembler Directives). Here are some highlights
specific to the Cortex M.

 .word is 2 bytes and .long is 4 bytes.

 .paddr is used instead of .long to specify a function address. Even though
functions are allocated in a 4-byte boundary per Cortex M requirements, function
addresses must have the low -rder bits set as a requirement for compatibility with
ARM architecture. In theory this should not be needed for the Cortex M, since it
can only execute Thumb-2 instructions. Nevertheless, the hardware appears to
enforce this restriction.
102

C RUNTIME ARCHITECTURE
Data Type Sizes

(*) char is equivalent to unsigned char.

(**) 8 bytes / 64 bits double enabled for PRO edition only.

floats and doubles are in IEEE standard 32-bit format with 8-bit exponent, 23-bit
mantissa, and 1 sign bit.

Bitfield types must be either signed or unsigned. For example:

struct {

TYPE SIZE (bytes) RANGE

unsigned char 1 0..255

signed char 1 -128..127

char (*) 1 0..255

unsigned short 2 0..65535

(signed) short 2 -32768..32767

unsigned int 4 0..4294967295

(signed) int 4 -2147483648..2147483647

pointer 4 0..4294967295

unsigned long 4 0..4294967295

(signed) long 4 -2147483648..2147483647

unsigned long
long

8 0..18446744073709551615

(signed) long
long

8 -9223372036854775808

..9223372036854775807

float 4 +/-1.175e-38..3.40e+38

double 4

8 (**)

+/-1.175e-38..3.40e+38

+/-2.225e-308..1.798e+308

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
unsigned a : 1, b : 1;
};

Bitfields are packed Little Endian format, i.e., a is the least significant (right most) bit.
104

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Assembly Interface and Calling Conventions

The ImageCraft compiler adheres to the ARM Procedure Call Standard (AAPCS).

External Names

External C names are prefixed with an underscore. For example, the function main is
_main if referenced in an assembly module. Names are significant to 32 characters.
To make an assembly object global, use two colons after the name. For example,

_foo::
.word 1
.blkw 1

(In the C file)

extern int foo;

Arguments and Return Registers

C arguments are passed from left to right. ICCV8 for Cortex uses the AAPCS
convention and pass the first 16 bytes of arguments in registers R0 to R3. The called
function may use these registers for its purpose without saving or restoring them.
They are known as volatile registers. Return value is in R0 if it is 4 bytes or less, or R0/
R1 for double. Any arguments beyond the first 16 bytes are passed on the stack.

Structure is always passed on the stack. When the compiler generates code for a
function returning a structure, the compiler creates temporary space on the calling
function’s stack and passes the address to the function. The function then writes the
return result to this temporary space. All these activities are transparent to the users.

Volatile Registers

In addition to R0 to R3, a function may use R12 without saving or restoring its value.

Preserved Registers

If a function uses registers R4 to R11, then it must save their values on function entry
and restore them on function exit. They are known as preserved registers.

Register Usage Convention

R0 to R3 are used to pass function arguments, or for evaluating expressions. If the
compiler needs to use more registers to evaluate the expressions in a function, it will
start to use R4 and up. Any registers from R4 to R10 not used for expression
105

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
evaluation are assigned to local variables using an advanced register allocation
algorithm. Multiple local variables may be allocated to the same registers if the
compiler determines that their lifetimes do not overlap.

R11 is used as a frame pointer. Local variables not allocated to registers, arguments
passed on stack, and other temporary stack spaces are referenced using the frame
pointer.

R12 is a scratch register used for evaluation of certain complex expressions.

R13 is the stack pointer and should not be modified by the users directly.

R14 is the link register for function calling.

R15 is the PC.

Interrupt Handlers

With the Cortex-M profile, ARM architects an interrupt handling scheme such that any
C function can be used as interrupt handlers without additional assembly “glue.” The
only requirement is that function return must be done using a “pop to PC,” or “BX LR”
and not the otherwise equivalent “mov PC, LR” as the hardware logic looks at the bits
in LR in certain instructions only to perform interrupt handler return.

Structure

Passing by Value

If passed by value, a structure is always passed through the stack, and not in
registers. Passing a structure by reference (i.e., passing the address of a structure) is
the same as passing the address of any data item; that is, a pointer to the structure
(which is 2 bytes) is passed.

Returning a Structure by Value

When a function returning a structure is called, the calling function allocates a
temporary storage and passes a secret pointer to the called function. When such a
function returns, it copies the return value to this temporary storage.
106

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
C Machine Routines

Most C operations are translated into direct ARM Cortex-M instructions. However,
there are some operations that are translated into subroutine calls because they
involve many machine instructions and would cause too much code bloat if the
translations were done inline. These routines are written in assembly language and
can be distinguished by the fact that the routine names do not start with an underscore
or have a two-underscore prefix. These routines may or may not use the standard
calling convention and you should not use them directly, as we may change their
names or implementations depending on the compiler releases.
107

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Memory Map

On a physical device, program memory is typically in the flash memory, although for
development and debugging purpose, sometimes you may use SRAM to store
program memory data.

ARM architects the Cortex-M to have code memory space from 0x0 up to
0x1FFF,FFFF (512 megabytes but most devices only have 128K to 512K of code
memory). The system reset and interrupt vector table are allocated starting from
location 0. The interrupt vectors may be “re-mapped” to a SRAM location so that the
users may modify the table easily.

Cortex-M also architects the data memory space to be up to 512 megabytes from
0x2000,0000 up to 0x3FFF,FFFF.

Device flash memory may or may not start at address 0, depending on the silicon
vendor. For example, a vendor may use a bootloader ROM starting at 0 and then map
flash memory to location 0 (so the reset would jump to flash code immediately) if
certain hardware pins are set up certain ways.

Some devices even have SRAM not in the data memory space. In particular, the
NXP1768 and similar devices split the SRAM allocation into two regions and up to
32K are present from 0x1000,0000 to 0x1000,7FFF.

With our compiler, in most cases, you just select the device by name in the IDE, and
the compiler and IDE will set up the addresses for you without you writing a
complicated linker file.

SRAM

Global variables are allocated starting from the bottom (low address) of the SRAM. If
you define any heap memory, it starts from the end of the global variables and
continues to grow toward the high address.

The stack starts at the top of the SRAM and grows downward. The stack must be 4
byte aligned at all times. If the stack ever runs into the global variables or the heap,
Bad Things Will Happen.
108

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Program Areas

The compiler generates code and data into different “areas.” See Assembler
Directives. The areas used by the compiler are:

Read-Only Memory

 idata - the initial values for the global data and strings are stored in this area and
copied to the data area at startup time.text - this area contains program code.

Data Memory

 data - this is the data area containing initialized global and static variables, and
strings. The initial values of the global variables and strings are stored in the
idata area and copied to the data area at startup time.

 bss - this is the data area containing C global variables without explicit
initialization. Per ANSI C definition, these variables get initialized to zero at startup
time.

 noinit - you use #pragma data:noinit to put global variables for which you
do not want any initialization. For example:

#pragma data:noinit
int junk;
#pragma data:data

The job of the linker is to collect areas of the same types from all the input object files
and concatenate them together in the output file. See Linker Operations.

User-Defined Memory Regions

In most cases, you do not need to specify the exact location of a particular data item.
For example, if you have a global variable, it will be allocated somewhere in the data
area, and you do not need to specify its location.

However, there are occasions where you want to specify the exact location for a data
item or a group of data:

 battery-backed SRAM, dual-port SRAM, etc. - sometimes it is necessary to
allocate some items in special RAM regions.

There are two ways to handle this.

1. relocatable area - in an assembly module, you can create a new program area
and then you can specify its starting address under the “Other Options” edit box in
109

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Build Options - Target. For example, in an assembly file:

.area battery_sram
_var1:: .blkw 1 ; note _ in the front
_var2:: .blkb 1 ; and two colons

In C, these variables can be declared as:

extern int var1;
extern char var2;

Let’s say the battery-backed SRAM starts at 0x4000. In the Advanced->Other
Options edit box, you write:

-bbattery_sram:0x4000

Please refer to the page Build Options - Target for full description of address
specifier.

2. absolute area - you can also define program areas that have absolute starting
addresses, eliminating the need to specify the address to the linker. For example,
using the same example as before, you can write the following in an assembly file:

.area battery_sram(abs)

.org 0x4000
_var1:: .blkw 1 ; note _ in the front
_var2:: .blkb 1 ; and two colons

The (abs) attribute tells the assembler that the area does not need relocation
and it is valid to use the .org directive in the area. In this example, we use .org
to set the starting address. In C the declaration will be exactly the same as before.

If you have data that have initialized values, then you can also use the following
pragma in C to define them (note: this only works with data that have initialized
values):

#pragma abs_address:0x4000
int var1 = 5;
char var2 = 0;
#pragma end_abs_address
110

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Stack and Heap Functions

Besides static program areas, the C runtime environment contains two additional data
regions: the stack area and the heap area. The stack is used for procedure calls, local
and temporary variables, and parameter passing. The heap is used for dynamically
allocated objects created by the standard C malloc(), calloc(), and realloc()
calls. To use the heap functions, you must first initialize the heap region. See Standard
Library And Memory Allocation Functions.

There is no provision for stack overflow checking, so you must be careful not to
overrun your stack. For example, a series of recursive calls with a large amount of
local variables would eat up the stack space quickly. When the stack runs into other
valid data, or if it runs past valid addresses, then Bad Things Can Happen (tm). The
stack grows downward toward the lower addresses. I

If you use #pragma text / data / lit / abs_address to assign your own
memory areas, you must manually ensure that their addresses do not overlap the
ones used by the linker. As an attempt to overlap allocation may or may not cause the
linker to generate an error, you should always check the .mp map file. Use the IDE
menu selection (View->Map File) for potential problems.
111

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
112

COMMAND-LINE COMPILER
OVERVIEW
Compilation Process

[Underneath the user-friendly IDE is a set of command-line compiler programs. While
you do not need to understand this chapter to use the compiler, this chapter is good
for those who want to find out “what's under the hood.”]

Given a list of files in a project, the compiler's job is to translate the files into an
executable file in some output format. Normally, the compilation process is hidden
from you through the use of the IDE’s Project Manager. However, it can be important
to have an understanding of what happens “under the hood”:

1. icppw.exe, the C preprocessor, processes the # directives in a C source file.

2. iccomcortex.exe, the compiler proper, translates the preprocessed source file
to an assembly file.

3. iascortex.exe, the assembler, translates each assembly file (either from the
compiler or assembly files that you have written) into a relocatable object file.

4. ilnkcortex.exe is the linker. After all the files have been translated into object
files, the linker combines them together to form an executable file. In addition, a
map file, a listing file, and debug information files are also output.

5. ilstcortex.exe, the listing file manager, generates the .lst intersperse C
and asm listing file.

All these details are handled by the compiler driver. You give it a list of files and ask it
to compile them into an executable file (default) or to some intermediate stage (for
example, to the object files). The driver invokes the compiler, the assembler, and the
linker as needed.

The previous versions of our IDE generate a makefile and invoke the make program to
interpret the makefile, which causes the compiler driver to be invoked.

Version 8’s Code::Blocks IDE (C::B) does not use the make program and uses an
internal build system that calls the compiler driver directly.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Driver

The compiler driver examines each input file and acts on the file based on the file's
extension and the command-line arguments it has received. The .c files and .s files
are C source files and assembly source files, respectively. The design philosophy for
the IDE is to make it as easy to use as possible. The command-line compiler, though,
is extremely flexible. You can control its behavior by passing command-line arguments
to it. If you want to interface with the compiler with your own GUI (for example, the
Codewright or Multiedit editor), here are some of the things you need to know.

 Error messages referring to the source files begin with !E file(line):...
Warning messages use the same format but use !W as the prefix instead of !E.

 To bypass the command-line length limit on Windows 95/NT, you may put
command-line arguments in a file and pass it to the compiler as @file or @-
file. If you pass it as @-file, the compiler will delete file after it is run.

The next section, Compiler Arguments, elaborates further on the subject.
114

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Compiler Arguments

The IDE controls the behaviors of the compiler by passing command-line arguments
to the compiler driver. Normally you do not need to know what these command-line
arguments do, but you can see them in the Status Window when you perform a build.
This section is useful if you are using command line scripts to call the compiler
directly.

The best method to find the correct compiler flags is to use the IDE and invoke
ImageCraft->Create Makefile and then either use the generated makefile as is
or extract the relevant compiler and linker flags within. Note that the CodeBlocks IDE
does not use a makefile and uses an internal build system instead.

You call the compiler driver with different arguments and the driver in turn invokes
different passes of the compiler tool chain with the appropriate arguments.

The general format of a command is as follows:

icccortex [arguments] <file1> <file2> ... [<lib1> ...]

where icccortex is the name of the compiler driver. As you can see, you can invoke
the driver with multiple files and the driver will perform the operations on all of the files.
By default, the driver then links all the object files together to create the output file.

The driver automatically adds -I<install root>\include to the C preprocessor
argument and -L<install root>\lib to the linker argument.

For most of the common options, the driver knows which arguments are destined for
which compiler passes. You can also specify which pass an argument applies to by
using a -W<c> prefix. For example:

 -Wp is the preprocessor. For example, -Wp-e

 -Wf is the compiler proper. For example,-Wais the assembler.

 -Wl (letter el) is the linker.

Driver Arguments

 -c

Compile the file to the object file level only (does not invoke the linker).

 -o <name>

Name the output file. By default, the output file name is the same as the input file
name, or the same as the first input file if you supply a list of files.
115

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 -v

Verbose mode. Print out each compiler pass as it is being executed.
116

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Preprocessor Arguments

 -D<name>[=value]

Define a macro. See Build Options - Compiler. The driver and the IDE predefines
certain macros. See Predefined Macros.

 -e

Accept C++ comments.

 -I<dir>

(Capital letter i) Specify the location(s) to look for header files. Multiple -I flags
can be supplied. The directories are searched in order they are specified.

 -U<name>

Undefine a macro. See Build Options - Compiler.
117

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Compiler Arguments

 -A -A

Turn on strict ANSI checking. Single -A turns on some ANSI checking.

 -e

Accept extensions including 0b???? binary constants. See Pragmas and
Extensions.

 -g

Generate debug information.

 -MISRA_CHECK

Enable MISRA / Lint Code Checking. PRO edition only.
118

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Assembler Arguments

 -m

Enable case insensitivity with macro name. The default is that macro names are
case sensitive.
119

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Linker Arguments

Address ranges are in the form <start>.<end>[:<start>.<end>]*. For example:

0x0.0x10000 ; one range
0x0.0x10000:0x11000.0x20000 ; two ranges

The compiler uses up to but not including the “end” address for memory allocation.
Typically the address ranges are not checked for overlaps. It’s up to you to ensure that
address ranges in the same memory space from within the same program area or
from different areas do not overlap. This includes any absolute memory regions used
by your programs using the .org assembly directive or one of the abs_address C
#pragma.

Specifying Addresses

If you use #pragma text / data / lit / abs_address to assign your own
memory areas, you must manually ensure that their addresses do not overlap the
ones used by the linker. As an attempt to overlap allocation may or may not cause the
linker to generate an error, you should always check the .mp map file (use the IDE
menu selection View->Map File) for potential problems.

 -b<area>:<address ranges>

Assign the address ranges for the area. You can use this to create your own areas
with its own address. See Program Areas. For example:

-bmyarea:0x1000.0x2000:0x3000.0x4000

specifies that myarea goes from locations 0x1000 to 0x2000 and then from
0x3000 to 0x4000.

 -bdata:<address ranges>

Assign the address ranges for the area named data, which is used by your
program’s global variables.

 -btext:<address ranges>

Assign the address ranges for the area named text. The format is <start
address>[.<end address>], where addresses are byte addresses. text is
the first area for the Cortex compiler and thus this effectively declares the entire
usable space in the flash.

 -bvectors:<address range>

Assign the address range for the interrupt vector area. The area vectors is defined
in the file cortex_vectors.s. See Interrupt Vector Table
120

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Others

 -cross_module_type_checking

Enable Cross Module Type Checking. Available in the PRO edition only.

 -d<name>:<#>

Define a link time constant. <name> should be a symbol used in an assembly
instruction and cannot be used in the assembly directive .if etc.

 -dinit_sp:<address>

Define the initial stack pointer value. This is typically the address of the end of
SRAM and must be 4 byte aligned.

 -elim[:<area>]

Enable the Unused Code Elimination optimization. PRO versions only.

 -F<pat>

Fill unused ROM locations with pat. Pattern must be an integer. Use 0x prefix for
hexadecimal integer.

 -fintelhex

Output format is Intel HEX.

 -g

Generate debug information.

 -L<dir>

Specify the library directory. Multiple directories may be specified and they are
searched in the reverse order (i.e., last directory specified is searched first).

 -l<libname>

Link in the specific library files in addition to the default libccortex.a. This can
be used to change the behavior of a function in the default library
libccortex.a, since the default library is always linked in last. The libname is
the library file name without the lib prefix and without the .a suffix. For example:

-llpcortex “liblpcortex.a” using full printf
-lfpcortex “libfpcortex.a” using floating-point
printf

 -m<device name>

Specify the device name. This is emitted to the top of the .mp map file.
121

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 -nb:<#>

Specify the Build number of the project. The linker emits the build number, the
compiler version and other documentary information to the top of the .mp map
file.

 -R

Do not link in the startup file or the default library file. This is useful if you are
writing an assembly-only application.

 -O

Enable the Code Compression optimization. ADV or PRO versions only.

 -u<crt>

Use <crt> as the startup file. If the file is just a name without path information,
then it must be located in the library directory.
122

TOOL REFERENCES
MISRA / Lint Code Checking

MISRA C is a coding standard for the C programming language developed by MISRA
(Motor Industry Software Reliability Association, http://www.misra.org.uk). Initially
aimed to improve a program’s safety and portability in the automotive industry, with
the ever-rising popularity of embedded devices, MISRA C guidelines are now being
adopted by many organizations in the embedded space outside of the auto industry.
(Think MISRA C as a superset of Lint, if you are familiar with that tool.)

We are currently only implementing a subset of the guidelines; more will be added in
subsequent releases. More importantly, while a goal of MISRA C is to increase
portability, we have identified a number of MISRA C guidelines that are never going to
be an issue in any 2’s-complement machine, and rather than overloading the user with
even more warning messages, some of those guidelines will not be implemented. This
decision fits into our philosophy of increased usability while not being so pedantic that
it goes against being pragmatic.

There are also checks that are difficult to implement from a technological standpoint;
mainly ones that involve whole-program behavior checking or dynamic checks. We
will consider those as resources permit.

It is typical to encounter hundreds and sometimes even thousands of MISRA C
warnings when you first run your project through it. However, sometimes the pain of
sloughing through the messages is worthwhile, as one of our users writes:

"Thanks to these MISRA warnings, I found a bug that has been
going through unnoticed for a few years”

MISRA checking is available in the PRO edition of our tools, although there are a few
warnings that possibly reflect errors so they are enabled all the time. Under the
Code::Blocks IDE, invoke Project->Build Options->Compiler->Enable
MISRA Checks to enable this option. This corresponds to the -MISRA_CHECK
compiler flag.

MISRA Usage Recommendation

We recommend that you enable the MISRA checks occasionally to weed out any
obvious errors in your code. There are some MISRA rules that may or may not make
sense for you or your organization; for example, use of break and continue
statements are discouraged. If you need to, you can disable individual MISRA check
warning by putting the warning numbers in the file
c:\iccv8avr\misra.nowarns.txt. The warning numbers can be separated by
spaces, tabs, commas or newlines. Any characters after a semicolon will be ignored
until the next line.

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Some MISRA Explanations

Most MISRA messages should be self-explanatory. Here are explanations for some
common and uncommon warnings and the suggested remedies.

!W (14):[warning] [MISRA 1521]suspicious loop: `i' modifies in both the
condition and increment clauses

A loop counter is a variable that is modified in the condition or the increment clause of
a for loop. If a variable is modified in both the condition and increment clauses of the
same for loop then it's still a loop counter, but then it is a suspicious loop and the
warning is generated, e.g.:

for(i = 0; i++ < 10; i++) ... // WARNING: "i" is modified in
both clauses

However, a loop that has no loop counter that is modified in both the clauses is not
considered suspicious, e.g.:

for(j = 0; i < 10 && j++ < 10; i++) ... // OK: "i" and "j"
are different loop counters

!W (11):[warning] [MISRA 1502]relational expression with a boolean operand

A relational expression an operand of which is another logical expression is
considered suspicious, e.g.:

int g(int a, int b, int c)
{
return a < b < c; // WARNING
}

The parentheses can be used to let the compiler know that a comparison of such a
kind is intended:

int f(int, int, int);
int f(int a, int b, int c)

{
return (a < b) < c; // OK
}

124

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (4):[warning] [MISRA 1520]loss of sign in conversion from `int' to `unsigned
int'

!W (8):[warning] [MISRA 1506]potential loss of sign in conversion from `int' to
`unsigned int'

One of these warnings is generated whenever a negative or potentially negative value
is implicitly converted to an unsigned type and thus loses its sign, e.g.:

unsigned g = -1; // WARNING: loss of sign

unsigned f(int i)
{
unsigned u = i; // WARNING: potential loss of sign
return u;
}

Explicit cast can be used to suppress this kind of warnings:

unsigned g = (unsigned) -1; // OK

unsigned f(int i)
{
unsigned u = (unsigned) i; // OK
return u;
}

!W (4):[warning] [MISRA 1500]empty character constant

Empty character constants are not allowed by the ISO/ANSI standards and thus are
an extension of this specific compiler. For example, both the initializers are empty
character constants:

int c = ''; // WARNING
int d = L''; // WARNING

Note that null characters can be specified with the null escape sequence \0 or just as
the zero integer constant:

int c = 0; // OK
int d = L'\0'; // OK
125

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (10):[warning] [MISRA 1512]suspicious array-to-pointer decay in the left
operand of `->'

An implicit array-to-pointer decay in the left operand of the -> member access
operator is considered suspicious. For example:

struct S {
int i;
} a[5];

int f(void)
{
return a -> i; // WARNING: the index is not specified
}

The warning can be suppressed by specifying the index of the dereferencing array
element explicitly:

int f(void)
{
return a[0].i; // OK
}

!W (8):[warning] [MISRA 1515]assignment used as conditional expression

!W (11):[warning] [MISRA 2350]assignment in conditional expression

Assignment operators used within control expressions of the conditional and loop
operators are considiered suspicuous, e.g.:

if(i = j) ... // WARNING

Note that the use of compound assignments in these contexts results in the same:

if(i += j) ... // WARNING

Also, note that the increment and decrement operators are not considered to be
assignments in these contexts:

if(i++) ... // OK: not an assignment

The warning can be suppressed by surrounding the assignment expression with the
parentheses:

if((i = j)) ... // OK: surrounded by parentheses
126

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (10):[warning] [MISRA 3010]pointer arithmetic used

MISRA prohibits any kind of pointer arithmetic. This includes adding an integer to a
pointer and subtraction of an integer or pointer from another pointer, e.g.:

int i;
int *bar(unsigned);

int *f(int *p, int *q); int *f(int *p, int *q)
{
if(i < 33) {

return 1 + p; // WARNING: pointer +
integer

} else {
if(i < 55) {

return p - 1; // WARNING: pointer
- integer

} else {
if(i < 77) {

return bar(p - q); // WARNING: pointer
- pointer

} else {
/* do nothing */

}
}

}
return &p[2]; // OK

}

Note that array subscription ([]) and dereferencing (*, . and ->) operators are
allowed, so it is usually possible to rewrite the code that uses pointer arithmetic so that
it modifies integer indices instead of changing the pointers themselves. For example,
the following function

int strlen(const char *s)
{
int n = 0;
while(*s != '\0') {

s++; // WARNING
}
return n;

}

127

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
can be rewritten as

int strlen(const char *s)
{
for(i = 0; s[i] != '\0'; i++) {

/* do nothing */
}
return i;

}

!W (15):[warning] [MISRA 2140]expression of plain `char' type is suspicious in
this context

The plain char type is the char type specified without the one of the explicit "signed"
or "unsigned" type specifiers, like this:

char c;

MISRA prohibit the use of values of the plain char type, as the signedness of these
values depends on the specific compiler used as well as its options as long as they
may control the signedness of that type.

Note that declarations that use plain char type are still allowed. For example:

signed char s; // OK: not a plain "char"
unsigned char u; // OK: not a plain "char"

char c; // OK: it's just a declaration
char *str = "Hello"; // OK: another declaration that use
plain "char"
void f(void)

{
if(str[5] == 0xf5) { // WARNING: "s[5]" is of type plain

"char"
return;

}

if((unsigned char) str[5] == 0xf5) { // OK
return;

}
}

128

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (6):[warning] [MISRA 2180]numeric constant of type `int' encountered where
constant of type `unsigned int' expected

MISRA requires numeric constants to have proper types. That means then no numeric
constant shall be a subject to a conversion that changes it type; instead, where
possible, the numeric constant shall be suffixed so it has the suitable type. For
example:

unsigned f(unsigned i)
{
return i + 1; // WARNING: the literal "1" has type "int"

whereas
// an integer of type "unsigned int" is expected

}

double g(void)
{
return 1.f; // WARNING: the literal "1.f" has type

"float",
 // but a value of type "double" is expected

}

unsigned char h(void)
{
return 1; // OK: the literal has type "int" which

differs
// from the expected type "unsigned char", but
// there is no suffix for this type, so the
// compiler keeps silence

}

The following functions are examples of the proper use of the numeric suffixes:

unsigned f(unsigned i)
{
return i + 1u; // OK
}

double g(void)
{
return 1.; // OK
}

129

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (13):[warning] [MISRA 2460]expression modifies `i' more than once without
an intervening sequence point

If an expression modifies a variable more than once and there is no sequence point
between these two modifications, then the result of evaluation of the expression is
unexpected by the definition of the C Standard and the very expression is prohibited
by MISRA.

A sequence point is a point in the execution sequence of a program for which the C
Standard requires that all current changes (including modifications of variables) made
during previous evaluations are complete.

The following list enumerates locations of the sequence points:

 The call to a function, after the arguments have been evaluated.

 The end of the first operand of the following operators: logical AND &&, logical OR
||, conditional operator ? and comma operator.

 The end of a full declarator;

 The end of a full expression: an initializer, the expression in an expressifon
statement, the controlling expression of a selection statement (if or switch), the
controlling expression of a while or do statement, each of the expressions of a
for statement, the expression in a return statement;

 Immediately before a library function returns;

 After the actions associated with each formatted input/output function conversion
specifier.

 Immediately before and immediately after each call to a comparison function, and
also between any call to a comparison function and any movement of the objects
passed as arguments to that call.

The following function mentions some expressions that violate this MISRA rule as well
as some common expressions that do not. Please see the comments for
explanations.

int (*fp)(int, int), (*fp2)(int, int), (*fp3)(int, int), a,
b, c;

void f(int i, int j, int *p)
{
int k;

i = i; // OK: there is no modification in the right
operand
130

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
i = i++; // WARNING: the right operand modifies variable
used in the operand

i += i; // OK: no modification in the right operand

i <<= i++; // WARNING: the writings to "i" interfere

i = j++; // OK: different variables accessed

i = (i = i); // WARNING: these two assignments modify the
same variable;
 // note that by the Standard it doesn't matter
whether the
 // same value is assigned or not

j = i++ + i++;
 // WARNING: two modifications of "i" that are not
delimited
 // by a sequence point

j = p++[*p++];
 // WARNING: modifications of "p" interfere

fp(i++, j++);
 // OK: the arguments modify different variables

fp(j++, j++);
 // WARNING: modifications of "j" interfere

(fp = fp2)((fp = fp3, fp2 = fp)(0, 0), 0);
 // WARNING: the modification in the function
designator
 // interfere with the use of "fp" in the function
call
 // argument

i = (int) sizeof(j++ * j++);
 // OK: the operand of "sizeof" is never evaluated

i = (int) sizeof(j++) * (int) sizeof(j++);
 // OK: ditto
131

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
k = (j++, i++) + (i++, j++);
 // WARNING: the comma operators do not delimit the
 // modifications of "i" as well as they do not
delimit the
 // modifications of "j"

k = (i++ && j++) + (j++ && i++);
 // WARNING: ditto

k = i++ && i++;
 // OK: there is a sequence point between the
modifications of
 // "i"

k = (k == 0) ? i++ : j++;
 // OK: this expression modifies different
variables

k = (k == 0) ? i++ : i++;
 // OK: only one of the "i"s is to be evaluated

k = (i++ == 0) ? i++ : j++;
 // OK: the modification in the condition does not
interfer
 // with the modification in the left branch as
there is a
 // sequence point after the first operand of the
conditional
 // operator

k = (i++ + j++ == 0) ? i++ : j++;
 // OK: ditto

i = a + b++ + b++;
 // WARNING: the modifications of "b" interfere

i = a + b++ + c + b++;
 // WARNING: ditto
}

132

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
!W (8):[warning] [MISRA 2570]`continue' statement used

!W (16):[warning] [MISRA 2580]`break' statement used with a loop

MISRA prohibits the continue and break statements within loops. Note that MISRA
also prohibits the goto statement, so one way to work this around without violating
the MISRA rules is to segregate such a loop to a separate function and use the
return statement within that function to terminate the loop. Another possible solution
is to rewrite the condition and body of the loop so that the continue and/or break
statements can be eliminated.

!W (10):[warning] [MISRA 2680]local function declaration

Local function declarations are prohibited by MISRA, as they describe a global entity
(namely, a function) with a symbol a scope of which is limited by the block of the
declaration. This means there may be a function that has several different (probably
incompatible) local declarations visible in separate portions of the code, so that the
compiler doesn't check all these declarations for compatibility and probably even
generates the wrong code for the calls of the function.

The following example explains which declarations are local function declarations and
which are not.

int f(void); // OK: a file-scope declaration

void g(void)
{
typedef int T(void); // OK: not a function declaration

int p(void); // WARNING: local function
declaration

T q; // WARNING: ditto
}

133

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Code Compressor (tm)

The Code Compressor (tm) optimizer is a state-of-the-art optimization that reduces
your final program size from 5-18%. It is available on the PRO edition of our compilers
for select targets. It works on your entire program, searching across all files for
opportunities to reduce program size. We are providing this innovative technology for
commercial embedded compilers before anyone else.

A new feature in the PRO edition is the Unused Code Elimination optimization
optionally performed by the Code Compressor.

Advantages

 Code Compressor decreases your program size transparently. It does not
interfere with traditional optimizations and can decrease code size even when
aggressive traditional optimizations are done.

 Code Compressor does not affect source-level debugging.

Disadvantage

 There is a slight increase in execution time due to function call overhead.

Theory of Operation

The Code Compressor replaces duplicate code blocks with a call to a single instance
of the code. It also optimizes long calls or jumps to relative offset calls or jumps if the
target device supports such instructions. Code compression occurs (if enabled) after
linking the entire code image. The Code Compressor uses the binary image of the
program as its input for finding duplicate code blocks. Therefore, it works regardless
whether the source code is written in C or assembly.

The Code Compressor is part of the linker, and thus it has the full debug and map file
information, plus other linker internal data. These are important as the Code
Compressor must only compress code and not literal data, and must adjust program
counter references (e.g., branch offset, etc.).

Debugger data is also adjusted so there is no loss of debugging capabilities when the
Code Compressor is used.
134

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Compatibility Requirements

To make your code fully compatible with the Code Compressor, note that indirect
function references must be done through a function label entry in the func_lit
output area. See . This is done automatically if you are using C.

To simplify its operations, the Code Compressor only compresses code in the text
area. Since the Code Compressor operates post-linking, the text area then must be
the last (e.g., highest memory addresses) relocatable code area. Otherwise, the text
area may be shrunk, but then there would be a hole between the end of the text area
and the next code region.

If you are using C and the default areas, then this should not cause any issues.
However, if you create your own areas, then you must ensure that either it is located
before the text area or that it is located in an absolute location (e.g., a bootloader).

The above diagram shows a scenario that is problematic. Code areas created with the
AREA directive, using a name other than text, are not compressed or fixed up
following compression. If Function Y calls Function B, there is the potential that the
location of Function B will be changed by the Code Compressor. The call or jump
generated in the code for Function Y will go to the wrong location.

It is allowable for Function A to call a function in a non_text Area. The location for
Function B can change because it is in the text Area. Calls and jumps are fixed up in
the text area only. Following code compression, the call location to Function B from
Function X in the non-text Area will not be compressed.

All normal user code that is to be compressed must be in the default text Area. If you
create code in other area (for example, in a bootloader), then it must not call any
functions in the text Area. However, it is acceptable for a function in the text Area
to call functions in other areas.

"text"
Area

"non_text"
Area

Function A

Function B Function Y
Calls

Not Allowed
Function X

Allowed
135

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
If you reference any text area function by address, then it must be done indirectly. Its
address must be put in a word in the area func_lit. At runtime, you must de-
reference the content of this word to get the correct address of the function. Note that
if you are using C to call a function indirectly, the compiler will take care of all these
details for you. The information is useful if you are writing assembly code.

Temporarily Deactivating the Code Compressor

Sometimes you may wish to disable the code compressor temporarily. For example,
perhaps the code is extremely timing-sensitive and it cannot afford to lose cycles by
going through the extra function call and return overhead. You can do this by
bracketing code fragments with an instruction pair:

asm(“.nocc_start”);
...
asm(“.nocc_end”);

The code compressor ignores the instructions between these assembler directives in
the fragment.

The compiler provides the following macros in the system include file:

COMPRESS_DISABLE; // disable Code Compressor
COMPRESS_REENABLE; // enable Code Compressor again

for use in C programs.
136

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Assembler Syntax

Note that different vendors have their own assemblers and it’s likely that our directives
are different from other vendors. Generally, our assemblers are assumed in tandem
with our compilers with the main obligation satisfying the demand from the compilers.

Names

All names in the assembler must conform to the following specification:

(‘_’ | [a-Z]) [[a-Z] | [0-9] | ‘_’] *

That is, a name must start with either an underscore (_) or an alphabetic character,
followed by a sequence of alphabetic characters, digits, or underscores. In this
document, names and symbols are synonyms for each other. A name is either the
name of a symbol, which is a constant value, or the name of a label, which is the value
of the Program Counter (PC) at that moment. A name can be up to 30 characters in
length. Names are case-sensitive except for instruction mnemonics and assembler
directives.

Name Visibility

A symbol may either be used only within a program module or it can be made visible
to other modules. In the former case, the symbol is said to be a local symbol, and in
the latter case, it is called a global symbol.

If a name is not defined within the file in which it is referenced, then it is assumed to be
defined in another module and its value will be resolved by the linker. The linker is
sometimes referred to as a relocatable linker precisely because one of its purposes is
to relocate the values of global symbols to their final addresses.

Numbers

If a number is prefixed with 0x or $, said number is taken to be a hexadecimal
number.

Examples:
10
0x10
$10
0xBAD
0xBEEF
0xC0DE
-20
137

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Input File Format

Input to the assembler must be an ASCII file that conforms to certain conventions.
Each line must be of the form:

[label: [:]] [command] [operands] [;comments]
[] – optional field
// comments

Each field must be separated from another field by a sequence of one or more “space
characters,” which are either spaces or tabs. All text up to the newline after the
comment specifier (a semicolon, ;, or double slashes, //) are ignored. The input
format is freeform. For example, you do not need to start the label at column 1 of the
line.

Labels

A name followed by one or two colons denotes a label. The value of the label is the
value of the Program Counter (PC) at that point of the program. A label with two
colons is a global symbol; that is, it is visible to other modules.

Commands

A command can be an Cortex instruction, an assembler directive or a macro
invocation. The operands field denotes the operands needed for the command. This
page does not describe the Cortex instructions per se, since the assembler uses the
standard vendor-defined names; consult the vendor’s documentation for instruction
descriptions.

Expressions

An instruction operand may involve an expression. For example, the direct addressing
mode is simply an expression:

lds R10,asymbol

The expression asymbol is an example of the simplest expression, which is just a
symbol or label name. In general, an expression is described by:

expr: term | (expr) | unop expr | expr binop expr

term: . | name | #name
138

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The dot (.) is the current program counter. Parentheses () provide grouping.
Operator precedence is given below. Expressions cannot be arbitrarily complex, due
to the limitations of relocation information communicated to the linker. The basic rule is
that for an expression, there can only be only one relocatable symbol. For example,

lds R10,foo+bar

is invalid if both foo and bar are external symbols.

Operators

The following is the list of the operators and their precedence. Operators with higher
precedence are applied first. Only the addition operator may apply to a relocatable
symbol (such as an external symbol). All other operators must be applied to constants
or symbols resolvable by the assembler (such as a symbol defined in the file).

Note that to get the high and low byte of an expression, you use the > and <
operators, and not the high() and low() operators in the Atmel assembler.

Operator Function Type Precedence

* multiply binary 10

/ divide binary 10

% modulo binary 10

<< left shift binary 5

>> right shift binary 5

^ bitwise exclusive OR binary 4

& bitwise exclusive AND binary 4

| bitwise OR binary 4

- negate unary 11

~ one’s complement unary 11

< low byte unary 11

> high byte unary 11
139

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
“Dot” or Program Counter

If a dot (.) appears in an expression, the current value of the Program Counter (PC) is
used in place of the dot.
140

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Assembler Directives

Assembly directives are commands to the assembler. Directives are case-insensitive.

.area <name> [(attributes)]

Defines a memory region to load the following code or data. The linker gathers all
areas with the same name together and either concatenates or overlays them
depending on the area’s attributes. The attributes are:

abs, or <- absolute area
rel <- relocatable area

followed by

con, or <- concatenated
ovr <- overlay

The starting address of an absolute area is specified within the assembly file itself,
whereas the starting address of a relocatable area is specified as a command option
to the linker. For an area with the con attribute, the linker concatenates areas of that
name one after another. For an area with the ovr attribute, for each file, the linker
starts an area at the same address. The following illustrates the differences:

file1.o:
.area text <- 10 bytes, call this text_1
.area data <- 10 bytes
.area text <- 20 bytes, call this text_2

file2.o:
.area data <- 20 bytes
.area text <- 40 bytes, call this text_3

In this example, text_1, text_2, and so on are just names used in this example. In
practice, they are not given individual names. Let’s assume that the starting address
of the text area is set to zero. Then, if the text area has the con attribute, text_1
would start at 0, text_2 at 10, and text_3 at 30. If the text area has the ovr
attribute, then text_1 and text_2 would again have the addresses 0 and 10
respectively, but text_3, since it starts in another file, would also have 0 as the
starting address. All areas of the same name must have the same attributes, even if
they are used in different modules. Here are examples of the complete permutations
of all acceptable attributes:

.area foo(abs)

.area foo(abs,ovr)

.area foo(rel)

.area foo(rel,con)

.area foo(rel,ovr)
141

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
.ascii “strings”

.asciz “strings”

These directives are used to define strings, which must be enclosed in a delimiter pair.
The delimiter can be any character as long as the beginning delimiter matches the
closing delimiter. Within the delimiters, any printable ASCII characters are valid, plus
the following C-style escape characters, all of which start with a backslash (\):

\e escape
\b backspace
\f form feed
\n line feed
\r carriage return
\t tab
\<up to 3 octal digits> character with value equal to the
octal digits

.asciz adds a NUL character (\0) at the end. It is acceptable to embed \0 within the
string.

Examples: .asciz “Hello World\n”
 .asciz “123\0456”

.byte <expr> [,<expr>]*

.word <expr> [,<expr>]*

.long <expr> [,<expr>]*

These directives define constants. The three directives denote byte constant, word
constant (2 bytes), and long word constant (4 bytes), respectively. Word and long
word constants are output in little endian format, the format used by the AVR
microcontrollers. Note that .long can only have constant values as operands. The
other two may contain relocatable expressions.

Example: .byte 1, 2, 3
 .word label,foo

.blkb <value>

.blkw <value>

.blkl <value>

These directives reserve space without giving them values. The number of items
reserved is given by the operand.
142

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
.define <symbol> <value>

Defines a textual substitution of a register name. Whenever symbol is used inside an
expression when a register name is expected, it is replaced with value. For example:

.define quot R15
mov quot,R16

.else

Forms a conditional clause together with a preceding .if and following .endif. If
the if clause conditional is true, then all the assembly statements from the .else to
the ending .endif (the else clause) are ignored. Otherwise, if the if clause
conditional is false, then the if clause is ignored and the else clause is processed
by the assembler. See .if.

.endif

Ends a conditional statement. See .if and .else.

.endmacro

Ends a macro statement. See .macro.

.eaddr

Use only for the M256x and the ‘ (back quote) operator. Generates the 3-byte code
address of the symbol. For example:

.eaddr ‘function_name

<symbol> = <value>

Defines a numeric constant value for a symbol.

Example: foo = 5

.if <symbol name>

If the symbol name has a non-zero value, then the following code, up to either the
.else statement or the .endif statement (whichever occurs first), is assembled.
Conditionals can be nested up to 10 levels. For example:

.if cond
lds R10,a
143

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
.else
lds R10,b
.endif

would load a into R10 if the symbol cond is non-zero and load b into R10 if cond is
zero.

.include “<filename>”

Processes the contents in the file specified by filename. If the file does not exist,
then the assembler will try to open the filename created by concatenating the path
specified via the –I command-line switch with the specified filename.

Example: .include “registers.h”

.macro <macroname>

Defines a macro. The body of the macro consists of all the statements up to the
.endmacro statement. Any assembly statement is allowed in a macro body except
for another macro statement. Within a macro body, the expression @digit, where
digit is between 0 and 9, is replaced by the corresponding macro argument when
the macro is invoked. You cannot define a macro name that conflicts with an
instruction mnemonic or an assembly directive. See .endmacro and Macro
Invocation. For example, the following defines a macro named foo:

.macro foo
lds @0,a
mov @1,@0
.endmacro

Invoking foo with two arguments:

foo R10,R11

is equivalent to writing:

lds R10,a
mov R11,R10

.org <value>

Sets the Program Counter (PC) to value. This directive is only valid for areas with the
abs attribute. Note that value is a byte address.

Example: .area interrupt_vectors(abs)
 .org 0xFFD0
144

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
 .dc.w reset

.globl <symbol> [, <symbol>]*

Makes the symbols defined in the current module visible to other modules. This is the
same as having a label name followed by two periods (.). Otherwise, symbols are
local to the current module.

<macro> [<arg0> [,<args>]*]

Invokes a macro by writing the macro name as an assembly command followed by a
number of arguments. The assembler replaces the statement with the body of the
macro, expanding expressions of the form @digit with the corresponding macro
argument. You may specify more arguments than are needed by the macro body, but
it is an error if you specify fewer arguments than needed.

Example: foo bar,x

Invokes the macro named foo with two arguments, bar and x.

.paddr <function name>

Defines a function address. To be compatible with the Cortex-M hardware
requirements, all Thumb-2 function addresses have the low bit set (even though the
actual addresses are 4 bytes aligned).
145

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Linker Operations

The main purpose of the linker is to combine multiple object files into an output file
suitable to be loaded by a device programmer or target simulator. The linker can also
take input from a “library,” which is basically a file containing multiple object files.In
producing the output file, the linker resolves any references between the input files. In
some detail, the linking steps involve:

1. Making the startup file be the first file to be linked. The startup file initializes the
execution environment for the C program to run.

2. Appending any libraries that you explicitly requested (or in most cases, as were
requested by the IDE) to the list of files to be linked. Library modules that are
directly or indirectly referenced will be linked in. All the user-specified object files
(for example, your program files) are linked.

3. Appending the standard C library libccortex.a to the end of the file list.

4. Scanning the object files to find unresolved references. The linker marks the
object file (possibly in the library) that satisfies the references and adds to its list of
unresolved references. It repeats the process until there are no outstanding
unresolved references.

5. Combining “areas” in all marked object files into an output file and generating map
and listing files as needed.

Lastly, if this is the PRO edition and if the Code Compressor (tm) optimization option is
on, then the Code Compressor is called.

Memory Allocation

As the linker combines areas from the input object files, it assigns memory addresses
to them based on the address ranges passed in from the command line (see Linker
Arguments). These arguments in turn are normally passed down from the IDE based
on the specified device. That is, in the normal case, you do not need to do anything
and the IDE/compiler will do the correct memory allocation for you.

If you use #pragma text / data / lit / abs_address to assign your own
memory areas, you must manually ensure that their addresses do not overlap the
ones used by the linker. As an attempt to overlap allocation may or may not cause the
linker to generate an error, you should always check the .mp map file (use the IDE
menu selection View->Map File) for potential problems.
146

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
ImageCraft Debug Format

The ImageCraft debug file (.dbg extension) is a proprietary ASCII format that
describes the debug information. The linker generates target “standard” debug format
directly in addition to this file. For example, the AVR compiler generates a COFF
format file that is compatible with AVR Studio, the HC12 compiler generates a P&E
format map file, and the ARM compiler generates ELF/DWARF file.

By documenting the ASCII debug interface, we hope that third-party debuggers may
choose to use this format. This document describes version 1.4 of the debug format.

Basic File Structure

The debug file is in ASCII; each line is a separate command. The debug information
mirrors the structure of a mixed C and assembler project -- a debug file consists of
multiple sections, and each section contains the debug information of a source file:

<file 1>
<function 1>
<block>
<symbols>
<line numbers>
<function 2>
...
<file symbols>

<file 2>
...

Scope Rules

There are 3 scopes where items can be declared: FILE scope, FUNCTION scope,
and BLOCK scope. They correspond to the lexical scoping in C.

Convention

<addr> is an address and is always in hexadecimal. This can be either a code or data
address, depending on the context.

<line no> is a line number and is always in decimal.

<name> is a valid C or assembly name, or a file or directory name.

<type> is a data type specifier. See Type Specifier below.

<#> is a decimal number.
147

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Function Prologue and Epilogue

For each function, the compiler generates a prologue and an epilogue. The prologue
code includes the frame pointer setup, arguments and registers saving and local stack
allocation. The code starting at the FUNC address (see below) and the first BLOCK
address (non-inclusive) contains the prologue code.

FUNC address <= function prologue < BLOCK address

The epilogue code includes registers restore, stack deallocation and the return
instruction. The code starting at the last BLOCKEND address and the FUNCEND
adress (non-inclusive) contains the epilogue code.

(last) BLOCKEND address <= epilogue < FUNCEND address

Top-Level Commands

 IMAGECRAFT DEBUG FORMAT

Starting at V1.1, this is the first line of the debug file.

 VERSION <#.#>

Specifies the version number of the debug format. The current version is 1.4.

 CPU <name>

Specifies the target CPU. Valid choices are Cortex, HC11, HC12, HC16, AVR,
M8C, HC08, MSP430, or ARM.

 DIR <name>

Specifies the directory path of all subsequent FILE commands. An ending slash
‘\’ is always present.

 FILE <name>

Starts a file section. All the following debug commands apply to this file until the
end of file is reached or until the next FILE command is encountered. The full
path name is a concatenation of the last DIR command and the current FILE
command.

 FUNC <name> <addr> <type>

Starts a C function section. All the following debug commands apply to this
function until the FUNCEND command is encountered. For assembler modules, no
FUNC command is needed. The <addr> is the starting address of the first
instruction of the function.

 FUNCEND <addr>
148

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Ends a function section. The <addr> is the address beyond the last instruction of
the function. To access the function return sequence, see BLOCKEND below.

 DEFGLOBAL <name> <addr> <type>

Defines a file-scoped global symbol.

 DEFSTATIC <name> <addr> <type>

Defines a file-scoped global symbol.

 START <addr>

Specifies the address of the __start symbol, which is usually the starting
address of an ImageCraft generated program.

Function-Level Commands

 BLOCK <line no> <addr>

Starts a block in which symbols may be defined. All DEFLOCAL and DEFREG
commands must come after a BLOCK command. In the current version, there is
only one group of BLOCK/BLOCKEND command per function and all local
variables are declared in this block, even if they are declared in an inner block in
the source code. (This will be remedied in a future version of the compiler and
debug format. See “Future Enhancements” below.)

The <line no> and <addr> are exactly the same as the ones specified in the
LINE command that follows it.

 BLOCKEND <line no> <addr>

Ends a symbol-scoped block. The <line no> and <addr> are exactly the same
as the ones specified in the LINE command that follows it.

A special case is when <line no> is 0 (and this would be the last BLOCKEND in
the function). In this case, the function return sequence starts at this <addr> -
note that ImageCraft compiler generates only one return sequence per function.

 LINE <line no> <addr>

Defines a line number and its code address.

 DEFLOCAL <name> <offset> <type>

Defines a function-scoped symbol. <offset> is a decimal offset, usually from the
frame pointer.

 DEFREG <name> <reg> <type>
149

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Defines a register variable. <reg> is a target-specific register name. Currently
only applicable for the AVR and the Cortex-M compilers.

DEFREG register name is a decimal integer corresponding to the register number.

 STACK <return address location> <# of parameters>

Used only by the HC11 compiler. See below.

 DEFSTATIC <name> <addr> <type>

Defines a function-scoped static symbol.

 DEFGLOBAL <name> <addr> <type>

Defines a global symbol.

Structure Declaration

 STRUCT/UNION <size> <name>

Starts a structure or union declaration. <size> is the total size of the structure in
bytes. <name> is the structure tag name. If this structure has no tag in the source
file, a unique name of the form .<number> (dot followed by a number) will be
used. The .<number> is unique within a file scope as delimited by the FILE
command, and may be reused in other FILE units.

If the <size> is 0, this signifies a structure that is not defined in this FILE unit.
For example, the following C fragment:

struct bar { struct foo *p; struct bar *x; } bar;

outputs a STRUCT command with <size> equal to 0 for the structure tag foo if
the structure is not defined prior to the declaration. A STRUCTEND/UNIONEND
command must close off a STRUCT/UNION command. Nested declaration is not
used.

The STRUCT/UNION commands appear either at the file or function / block scope,
depending on the scope in the original C source. All data type references to
structures use the structure tag name <name>.

 FIELD <offset> <name> <type>

Declares a structure member. The FIELD command is only valid in a STRUCT/
UNION declaration. The <offset> is the byte offset. <name> is the field name.
<type> is the normal data type specifier, plus the addition of the

F[bitpos:bitsize]
150

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
which signifies a bitfield. <bitpos> matches the endianess of the CPU: on a little
endian machine such as the AVR, MSP430, and ARM, it’s right to left, but on a big
endian machine such as the Freescale CPU, it’s left to right.

 STRUCTEND/UNIONEND

Ends a structure or union declaration. Only the FIELD command may exist
between a STRUCT and STRUCTEND command pair. Within a scope, the STRUCT
command appears at most once for a unique tag name.

Type Specifier

Base Type

Type specifier is read from left to right, and must end with one of the following base
types:

Table 1: Base Type

Base Type C Data Type
Size in
Bytes

C signed char 1

S short 2 or 4

I (letter i) int 2 or 4

L long 4

D float 4

c unsigned char 1

s unsigned short 2 or 4

i unsigned int 2 or 4

l (letter el) unsigned long 4

V void, must be preceded by a pointer or func-
tion returning qualifier

-

S[<name>] Structure or union type with the tag name
<name>

-

151

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
The size of the data type is target-dependent.

Type Qualifier

Preceding the base type specifier is a sequence of type qualifiers, reading from left to
right.

 A[<total size>:dim1<:dims>*]

specifies an array type. The array attributes are enclosed by the [] pair. <total
size> is in bytes. :dim1 specifies the number of elements in the array. If this is a
multidimensional array, then the subsequent dimensions are specified in :dim
format. For example:

char a[10], aa[10][2];
int aaa[20][10][2];

may generate:

DEFGLOBAL a 100 A[10:10]c
DEFGLOBAL aa 110 A[20:10:2]c
DEFGLOBAL aaa 130 A[400:20:10:2]i

 p

specifies a pointer type. Example:

int (*ptr2array_of_int)[10];

may generate:

DEFGLOBAL ptr2array_of_int 100 pA[20:10]i

 f

specifies a function (returning the type following). Example:

void foo() { }
int (*ptr2func)();

may generate:

FUNC foo 100 fV

F[<pos>:<size] Bit field structure member -

Table 1: Base Type

Base Type C Data Type
Size in
Bytes
152

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
FUNCEND
DEFGLOBAL ptr2func 0 pfi

Constant (Program Memory) Qualifier

For Harvard Architecture targets with separate program and data memory spaces
such as the Atmel AVR, the keyword __flash is taken to refer to the program
memory. Thus, this attribute must be present in the datatype specifier.

For these targets, the character k may precede any datatype string and may appear
after a p pointer qualifier. In the first case, the symbol itself is in the program memory.
In the latter case, the item the pointer points to is in the program memory.

Future Enhancements

The following commands will be added to a later revision:

 DEFTYPE, DEFCONST, both of which obey the scope rule.

 Nested BLOCK/BLOCKEND commands and nested DEFLOCAL and DEFREG
commands.

This allows the inner scope local variables to be declared in the correct lexical
scope.

Target-Specific Command Information

AVR

 Frame Pointer is the Y pointer register (R28/R29 pair).

HC12 / M8C

 Frame Pointer is the X register.

HC08

 Frame Pointer is the H:X register pair.

ARM Cortex-M

 Frame Pointer is R11.

Asm/Linker Internal Debug Commands

If you look at a compiler-generated .s assembly file or a (non-ARM or non-Propeller)
.o object file, you may see internal debug commands. All assembler debug
commands in a .s file start with the .db suffix and all linker debug commands in a .o
file start with the .db suffix.
153

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
These commands generally follow the syntax and semantics of the corresponding
external commands documented here. However, they are subject to change and
therefore will not be documented. If you modify or write them by hand, it may cause
the assembler or linker to crash or not generate debug data as you may expect, as
there may be fragile synchronization between the compiler and the rest of the
toolchain in internal debug commands.
154

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Librarian

A library is a collection of object files in a special form that the linker understands.
When a library's component object file is referenced by your program directly or
indirectly, the linker pulls out the library code and links it to your program. The
standard supplied library is libccortex.a, which contains the standard C and ARM
Cortex-M specific functions.

There are times where you need to modify or create libraries. A command-line tool
called ilibw.exe is provided for this purpose. You can also create a library project
using the IDE if you have the PRO edition of the compiler. See Menu Reference: Build
Options - Project.

Note that a library file must have the .a extension. See Linker Operations.

Compiling a File into a Library Module

Each library module is simply an object file. Therefore, to create a library module, you
need to compile a source file into an object file. The PRO edition allows you to build
library project using the IDE. Otherwise, you will need to use the command line tool to
compile the files and buid the library using command line tools.

Listing the Contents of a Library

On a command prompt window, change the directory to where the library is, and give
the command ilibw.exe -t <library>. For example,

ilibw.exe -t libccortex.a

Adding or Replacing a Module

To add or replace a module:

1. Compile the source file into an object module.

2. Copy the library into the work directory.

3. Use the command ilibw.exe -a <library> <module> to add or replace a
module.

For example, the following replaces the putchar function in libccortex.a with
your version.

cd c:\iccv8cortex\libsrc.cortex
<modify putchar() in putchar.c>
<compile putchar.c into putchar.o>
155

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
copy c:\iccv8cortex\lib\libccortex.a ; copy library
ilibw.exe -a libccortex.a iochar.o
copy libccortex.a c:\iccv8cortex\lib ; copy back

The ilibw.exe command creates the library file if it does not exist; to create a new
library, give ilibw.exe a new library file name.

Deleting a Module

The command switch -d deletes a module from the library. For example, the following
deletes iochar.o from the libccortex.a library:

cd c:\iccv8cortex\libsrc.cortex
copy c:\iccv8cortex\lib\libccortex.a ; copy library
ilibw.exe -d libccortex.a iochar.o ; delete
copy libccortex.a c:\iccv8cortex\lib ; copy back
156

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
A
Acknowledgments .. 23
Assembler Directives .. 141
Assembler Operator Precedences ... 139
Assembly Interface ... 105

B
Bit Twiddling ... 34

C
C Machine Routines ... 107
C Operator Precedences .. 71
Code Compressor .. 134
Compilation Process .. 113
Compiler Arguments ... 115
Compiler Options: Compiler ... 53
Compiler Options: Paths .. 52
Compiler Options: Target ... 55
Converting from Other Compilers ... 19
Creating a New Project .. 43

D
Data Type Sizes ... 103
Driver .. 114

E
Editor Windows .. 45

F
File Types ... 15
Floating Point Math Functions .. 84

I
ImageCraft Debug Format .. 147

L
Linker Operations ... 146
Listing File .. 38

O
Overriding a Library Function ... 78

P
Product Updates ... 14
Program Areas ... 109
157

ICCV8 for Cortex – C Cross Compiler for the ARM Cortex-M
Project Manager ... 43

R
Registrating the Software ... 8

S
Software License Agreement .. 6
Standard IO functions ... 86
Standard Library Functions ... 90
String Functions .. 93

T
Testing Your Program Logic ... 38

V
Variable Arguments Functions .. 96
158

	INTRODUCTION
	Version, Trademarks, and Copyrights
	Software License Agreement
	IMPORTANT: Licensing the Software
	Using the Hardware Dongle
	Annual Maintenance
	Support
	Product Updates
	File Types and File Extensions
	Pragmas and Extensions
	Converting from Other ANSI C Compilers
	Optimizations
	Acknowledgments

	GETTING STARTED
	Quick Start Guide
	Example Projects

	EMBEDDED PROGRAMMING
	Embedded Programming Basics
	Some Pitfalls
	Best Practices
	Bit Twiddling
	General Debugging Hints

	CODE::BLOCKS IDE
	Code::Blocks IDE
	Useful General Settings
	IDE and the Compiler
	Project Management
	Editor
	Handy Features
	C::B Supported Variables
	Menu Reference: Build Options - Project
	Build Options - Paths
	Build Options - Compiler
	Build Options - Target

	C PREPROCESSOR
	C Preprocessor Dialects
	Predefined Macros
	Supported Directives
	String Literals and Token Pasting

	C IN 16 PAGES
	Preamble
	Declaration
	Expressions and Type Promotions
	Statements

	C LIBRARY AND STARTUP FILE
	C Library General Description
	Overriding a Library Function
	Startup File
	Interrupt Vector Table
	Header Files
	Character Type Functions
	Floating-Point Math Functions
	Standard IO Functions
	Standard Library And Memory Allocation Functions
	String Functions
	Variable Argument Functions

	PROGRAMMING THE CORTEX-M
	CMSIS (Cortex Microcontroller Software Interface Standard)
	Cortex-M Compiler-Specific Information

	C RUNTIME ARCHITECTURE
	Data Type Sizes
	Assembly Interface and Calling Conventions
	C Machine Routines
	Memory Map
	Program Areas
	Stack and Heap Functions

	COMMAND-LINE COMPILER OVERVIEW
	Compilation Process
	Driver
	Compiler Arguments
	Preprocessor Arguments
	Compiler Arguments
	Assembler Arguments
	Linker Arguments

	TOOL REFERENCES
	MISRA / Lint Code Checking
	Code Compressor (tm)
	Assembler Syntax
	Assembler Directives
	Linker Operations
	ImageCraft Debug Format
	Librarian
	A
	B
	C
	D
	E
	F
	I
	L
	O
	P
	R
	S
	T
	V

