
LVCS12
Hardware Version 1.10

User Manual

June 20 2008

Copyright (C)2003-2008 by
ELMICRO Computer GmbH & Co. KG
Hohe Str. 9-13 D-04107 Leipzig, Germany
Tel.: +49-(0)341-9104810
Fax: +49-(0)341-9104818
Email: leipzig@elmicro.com
Web: http://elmicro.com

This manual and the product described herein were designed
carefully by the manufacturer. We have made every effort to avoid
mistakes but we cannot guarantee that it is 100% free of errors.

The manufacturer's entire liability and your exclusive remedy shall
be, at the manufacturer's option, return of the price paid or repair or
replacement of the product. The manufacturer disclaims all other
warranties, either expressed or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpo-
se, with respect to the product including accompanying written material,
hardware, and firmware.

In no event shall the manufacturer or its supplier be liable for any
damages whatsoever (including, without limitation, damages for loss of
business profits, business interruption, loss of business information, or
other pecuniary loss) arising out of the use of or inability to use the
product, even if the manufacturer has been advised of the possibility of
such damages. The product is not designed, intended or authorized for
use in applications in which the failure of the product could create a
situation where personal injury or death may occur. Should you use the
product for any such unintended or unauthorized application, you shall
indemnify and hold the manufacturer and its suppliers harmless against
all claims, even if such claim alleges that the manufacturer was negli-
gent regarding the design or implementation of the product.

Product features and prices may change without notice.

All trademarks are property of their respective holders.

LVCS12

Contents

26Additional Information on the Web .
26Startup Code .
26Behaviour after Reset .
267. Application Hints .

25Real Time Clock .
24Indicator LED .
23Serial EEPROM .
22IIC Bus .
21SPI Bus .
19RS232 Interfaces .
18Integrated D/A-Converter .
16Integrated A/D-Converter .
16Operating Modes, BDM Support .
14Clock Generation and PLL .
13Reset Generation .
11Controller Core, Power Supply .
11Schematic Diagram .
116. Circuit Description .

105. Mechanical Dimensions .

8Solder Bridges .
8Jumpers .
84. Jumpers and Solder Bridges .

73. Parts Location Diagram .

62. Quick Start .

5Package Contents .
3Technical Data .
31. Overview .

User Manual

1

349. Memory Map .

30Monitor Commands .
30Usage .
28Redirected Interrupt Vectors .
27Write Access to Flash EEPROM .
27Autostart Function .
27Serial Communication .
278. TwinPEEKs Monitor .

LVCS12

2

1. Overview
LVCS12 is an easy applicable, credit card-sized Controller Module,

based on the 16-bit microcontroller family HCS12 by Motorola. The
LVCS12 module provides an easy way to evaluate the Microcontroller.
It is a versatile tool for rapid prototyping and a very cost-effective,
off-the-shelf solution for low- and mid-volume series applications.

The LVCS12 is equipped with a powerful MC9S12E128 microcon-
troller unit (MCU). It contains a 16-bit HCS12 CPU, 128KB of Flash
memory, 8KB RAM and a large amount of peripheral function blocks,
such as SCI (3x), SPI, IIC, Timer, PWM, ADC, DAC and General-Pur-
pose-I/Os. The MC9S12E128 has full 16-bit data paths throughout.
An integrated PLL-circuit allows adjusting performance vs. current
consumption according to the needs of the user application.

For HCS12 microcontrollers, a wide range of software tools
(monitors, C-compilers, BDM-debuggers) is available to accelerate the
development process.

Technical Data

w MCU MC9S12E128 with LQFP112 package (SMD)
w HCS12 16-bit CPU, uses same programming model and

command set as the HC12
w 14,7456 MHz crystal clock, up to 25 MHz bus clock using PLL
w 128 KB Flash
w 8 KB RAM
w 3x SCI - asynch. serial interface (e.g. RS232, LIN)
w 1x SPI - synch. serial interface
w 1x IIC - Inter-IC-Bus
w 12x 16-Bit Timer (Input Capture/Output Compare)
w 12x PWM (Pulse Width Modulator)
w 16-channel 10-bit A/D-Converter
w 2-channel 8-bit D/A-Converter

User Manual

3

w Integrated LVI-circuit (reset controller)
w BDM - Background Debug Mode Interface with standard 6-pin

connector available for download & debugging
w two serial interfaces equipped with RS232 transceiver (e.g. for

PC connection)
w 2nd serial port can directly drive a serial LC display unit
w 3rd serial port available with CMOS level
w Real Time Clock (RTC) provides time, calendar and alarm

functions; accuracy can be further increased by software
calibration, 3V LiMn battery-buffered

w 256 kbit Serial EEPROM
w DAC channels equipped with output amplifier (rail-to-rail

OpAmp)
w Indicator-LED
w Reset Button
w up to 87 free general-purpose I/Os
w all I/O-signals signals brought out on header connectors
w 3V..5V operating voltage, current consumption 50 mA typ.
w Mech. Dimensions: 2.1" x 3.4"

LVCS12

4

Package Contents

w Controller Module with MC9S12E128
w TwinPEEKs Monitor (in the MCU's Flash Memory)
w RS232 cable (Sub-D9)
w two header connectors (2x25 pins each), power connector
w User Manual (this document)
w Schematic Diagrams
w CD-ROM: contains assembler software, data sheets, CPU12

Reference Manual, code examples, C-compiler (evaluation
version), etc.

Controller Module LVCS12

User Manual

5

2. Quick Start
As no one likes to read lengthy manuals, we will summarize the

most important things in the following section. If you need any additio-
nal information, please refer to the more detailed sections of this
manual.

Here is how you can start:

w Please check the board for any damages due to transportation
w Connect the Controller Module via RS232 to a PC. The connec-

tion between LVCS12 (interface SER0, connector X3) and PC
can be established using the flat ribbon cable which is in the
box.

w On the PC, start a terminal program. An easy to use terminal
program is OC-Console, which is available at no charge from
our website!

w Select a baudrate of 19200 Bd. Disable all hardware or software
protocols.

w Connect a stabilized (!) DC power supply, e.g. here:
w GND to X2 pin 2
w +5V to X2 pin 1
w Check voltage and polarity before making the connection!
w Once powered up, the Monitor program will start, display a

message and await your commands.

We hope you will enjoy working with LVCS12!

LVCS12

6

3. Parts Location Diagram

Place Plan - Component Side

Solder Bridges on the solder side of the PCB

User Manual

7

4. Jumpers and Solder Bridges

Jumpers

There are no jumpers present on this board.

Solder Bridges

On the solder side of the module, the following solder bridges can
be found:

BR1: VRH
open external supply of VRH required
closed* VRH connected to VDDA (VCC) on-board

BR2: RxOUT
1-2* R1OUT/R2OUT drives PS0/PS2
2-3 R1OUT/R2OUT disabled (Tristate)

BR3: SHDN
1-2* IC3 always active (/SHDN = H)
2-3 use PP5 to activate/deactivate IC3

BR4, BR5: RS232 TxD/RxD Select (SER1/X4)
1-2* RS232 configured as "device"

(connection to a PC, etc.)
2-3 RS232 configured as "host"

(connection to a serial LCD, etc.)

* = Factory Default Setting

LVCS12

8

BR6: LCD Power Supply (SER1/X4)
open* VCC not available on RS232 port SER1

(standard Sub-D connector layout)
closed VCC available on RS232 port SER1

(at Pin 9 of the Sub-D connector)

BR7: RRTC
open* RTC can not cause system reset
closed RTC can cause system reset

* = Factory Default Setting

User Manual

9

5. Mechanical Dimensions
The following table summarizes the mechanical dimensions of the

LVCS12. The values provide a basis for the design of carrier boards etc.
Please note: Always check all mechanical dimensions using the real
hardware module!

The reference point (0,0) is located at the "south/west" corner of
the PCB. The PCB is orientated horizontally, as shown in the Parts
Location Diagram (see above).

All data for holes/drills (B) refer to the center of the hole/drill,
connectors (X) are referenced by pin 1.

2,1003,400PCB

1,0503,250B3

1,9500,150B2

0,1500,150B1

0,9500,150X7

0,1000,400X6

1,9000,400X5

1,8253,150X4

0,6753,150X3

0,7252,775X2

1,5750,150X1

Y in inchX in inch

LVCS12

10

6. Circuit Description
In this section, a number of details will be presented on how to

work with the HCS12 in general and the LVCS12 Controller Module in
particular.

Please be aware that, even if this manual can provide some specific
hints, it is impossible to cover all kinds of knowledge and techniques
required to design a microcontroller application. Please refer to the data
sheets of the silicon vendors and to the manuals of your software tools
to get additional information.

The software demos included in this paragraph are for demonstra-
tion puposes only. Please note, that we cannot guarantee for the correct-
ness and fitness for a particular purpose.

Schematic Diagram

To ensure best visibility of all details, the schematic diagram of the
LVCS12 is provided as a separate document.

Controller Core, Power Supply

VDDR/VSSR, VDDX/VSSX and VDDA/VSSA are the three
supply pin pairs of the MC9S12E128. The nominal operating voltage
(designated as VCC in the schematic diagram) of this microcontroller
unit (MCU) ranges from 3V to 5V. Internally, the MCU uses a core
voltage of only 2.5V. The necessary voltage regulator is already inclu-
ded in the chip, as well as I/O-buffers for all general-purpose
input/output pins. Therefore, the MCU behaves like a 3..5V device from
an external point of view. There is just one exception: the signals for
oscillator and PLL are based on the core voltage und must not be driven
by VCC levels.

The three terminal pairs mentioned above must be decoupled
carefully. A ceramic capacitor of 100nF is connected directly at each
pair (C15, C16, C17). A 10µF (electrolytic or tantalum) capacitor per

User Manual

11

node is added, especially if some MCU port pins are loaded heavily
(C5, C6, C7). Special care must be taken with VDDA, since this is the
reference point for the internal voltage regulator.

The internal core voltage appears at the pin pairs VDD1/VSS1,
VDD2/VSS2 and VDDPLL/VSSPLL, which have to be decoupled as
well (C19, C20, C21). A static current draw from these terminals is not
allowed. This is especially true for VDDPLL, which serves as the
reference point for the external PLL loop filter combination (R3, C3,
C4).

There are two MCU pins (VRH/VRL) to define the upper and
lower voltage limits for the internal analog to digital (ATD) converter.
While VRL is grounded, VRH is connected to VDDA via solder bridge
BR1. C18 is used for decoupling. VRH can be supplied externally when
opening solder bridge BR1. This can be useful if the main supply is not
in the desired tolerance band or if the ATD should work with a
reference value lower than VDDA. VRH must not exceed VDDA,
regardless of the selected supply mode.

The TEST pin is used for factory testing only, in an application
circuit this pin always has to be grounded.

LVCS12

12

Reset Generation

/RESET is the MCU's active low bidirectional reset pin. As an
input it initializes the MCU asynchronously to a known start-up state.
As an open-drain output it indicates that a system reset (internal to
MCU) has been triggered. The HCS12 MCUs already contain on-chip
reset generation circuitry including power-on reset, COP watchdog
timer and clock monitor. Additionally, the MC9S12E128 contains a
Low Voltage Inhibit (LVI) circuit. The task of this LVI circuit is to
issue a stable reset condition if the power supply falls below the level
required for proper MCU operation.

To furthermore increase system reliability, IC2 can be added as an
external LVI circuit. IC2 is equipped with an open-drain output in order
to prevent collisions with the MCU's bidirectional reset pin. The
/RESET signal is high while in inactive state because IC2 contains an
integrated pull-up resistor (approx. 5kOhm). Consequently, R6 is not
needed if IC2 is equipped.

The reset pulse issued by IC2 has a typical duration of 250ms
(minimum is 140ms). It is important to note, that this pulse will only be
applied during a power cycle event. IC2 will not stretch pulses coming
from the MCU's internal reset sources. This is essentially important,
since otherwise the MCU would not be able to detect the source of a
reset. This would finally lead to a wrong reset vector fetch and could
result in a system software crash. Please be aware, that also a capacitor
on the reset line would cause the same fatal effect, therefore external
circuitry connected to the /RESET pin of a HC12/HCS12 MCU should
never include a large capacitance!

User Manual

13

Clock Generation and PLL

The on-chip oscillator of the MC9S12Exx can generate the primary
clock (OSCCLK) using a quartz crystal (Q1) connected between the
EXTAL and XTAL pins. The allowed frequency range is 0.5 to
16MHz. As usual, two load capacitors are part of the oscillator circuit
(C1, C2). However, this circuit is modified compared to the standard
Pierce oscillator that was widely used for the HC11 and HC12.

On the LVCS12, the MC9S12E128 uses a Colpitts oscillator with
translated ground scheme. The main advantage is a very low current
consumption, though the component selection is more critical. The
LVCS12 circuit uses a high-quality quartz crystal together with two
load capacitors of only a few picofarad. Furthermore, special care was
taken for the PCB design to introduce as little stray capacitance as
possible in respect to XTAL and EXTAL.

With an OSCCLK of 14.7456 MHz, the internal bus speed (ECLK)
becomes 7.3728 MHz by default. To establish higher bus clock rates,
the PLL has to be engaged. The MC9S12Exx can be operated with a
bus speed of up to 25MHz.

A passive external loop filter must be placed on the XFC pin. The
filter (R3, C3, C4) is a second-order, low-pass filter to eliminate the
VCO input ripple. The value of the external filter network and the
reference frequency determines the speed of the corrections and the
stability of the PLL. If PLL usage is not required, the XFC pin must be
tied to VDDPLL.

The choice of filter component values is always a compromise over
lock time and stability of the loop. 5 to 10kHz loop bandwidth and a
damping factor of 0.9 are a good starting point for the calculations.
Example: with a quartz frequency of 16 MHz and a desired bus clock of
24 MHz, a possible choice is R3 = 4.7k and C3 = 22nF. C4 should be
approximately (1/20..1/10) x C3, e.g. 2.2nF in our case. These values
are suitable for a reference frequency of 1MHz (Note: to be defined in
example file S12_CRG.H). The according reference divider register
value is REFDV=15 and the synthesizer register setting becomes
SYNR=23. Please refer to the chapter "XFC Component Selection" in

LVCS12

14

the MC9S12DP256B Device User Guide for detailed description of
how to calculate values for other system configurations.

The following source listing shows the steps required to initialize
the PLL:

//===
// File: S12_CRG.C - V1.00
//===

//-- Includes ---

#include <mc9s12dp512.h>
#include "s12_crg.h"

//-- Code ---

void initPLL(void) {

 CLKSEL &= ~BM_PLLSEL; // make sure PLL is *not* in use
 PLLCTL |= BM_PLLON+BM_AUTO; // enable PLL module, Auto Mode
 REFDV = S12_REFDV; // set up Reference Divider
 SYNR = S12_SYNR; // set up Synthesizer Multiplier
 // the following dummy write has no effect except consuming some cycles,
 // this is a workaround for erratum MUCTS00174 (mask set 0K36N only)
 // CRGFLG = 0;
 while((CRGFLG & BM_LOCK) == 0) ; // wait until PLL is locked
 CLKSEL |= BM_PLLSEL; // switch over to PLL clock
 }

//===

R5 is used to pull /XCLKS high during reset which will select
Colpitts configuration of the oscillator. If /XCLKS were low during
reset, the oscillator would assume Pierce mode, which would require an
alternate circuitry. However, this mode could be used to apply an exter-
nal clock signal to the EXTAL pin of the MC9S12Exx.

Please note, that different derivatives of the HCS12 have different
funtionality regarding the /XCLKS pin.

User Manual

15

Operating Modes, BDM Support

Three pins of the HCS12 are used to select the MCU operating
mode: MODA, MODB and BKGD (=MODC). While MODA and
MODB are pulled low (R1, R2) to select Single Chip Mode, BKGD is
pulled high (R7) by default. As a consequence, the MCU will start in
Normal Single Chip Mode, which is the most common operating mode
for application code running on the HCS12.

The HCS12 operating mode used for download and debugging is
called Background Debug Mode (BDM). BDM is active immediately
out of reset if the mode pins MODA/MODB/BKGD are configured for
Special Single Chip Mode. This is done by pulling the BKGD pin low
during reset, while MODA and MODB are pulled-down as well.

Because only the BKGD level is different for the two modes, it is
quite easy to change over. However, there is no need to switch the
BKGD line manually via a jumper or solder bridge because this can be
done by a BDM-Pod (such as ComPOD12) attached to connector X1. A
BDM-Pod is required for BDM-based download and/or debugging
anyway, so it can handle this task automatically, usually controlled by a
PC-based debugging program.

Integrated A/D-Converter

The MC9S12Exx contains a 10-bit Analog-to-Digital Converter
modules. The module (ATD) provides 16 multiplexed input channels.

VRH is the upper reference voltage for all A/D-channels. On the
LVCS12, VRH is connected to VDDA (VCC) through solder bridge
BR1. After opening BR1, it is possible to use an external reference
voltage.

The following example program shows the initialization sequence
for the A/D-converter module ATD and a single-channel conversion
routine. The source file S12_ATD.C also contains some additional
functions for the integrated ATD module.

LVCS12

16

//===
// File: S12_ATD.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_atd.h"

//-- Code ---

// Func: Initialize ATD module
// Args: -
// Retn: -
//
void initATD0(void) {

 // enable ATD module
 ATD0CTL2 = BM_ADPU;
 // 10 bit resolution, clock divider=12 (allows ECLK=6..24MHz)
 // 2nd sample time = 2 ATD clocks
 ATD0CTL4 = BM_PRS2 | BM_PRS0;
 }

//---

// Func: Perform single channel ATD conversion
// Args: channel = 0..7
// Retn: unsigned, left justified 10 bit result
//
UINT16 getATD0(UINT8 channel) {

 // select one conversion per sequence
 ATD0CTL3 = BM_S1C;
 // right justified unsigned data mode
 // perform single sequence, one out of 8 channels
 ATD0CTL5 = BM_DJM | (channel & 0x07);
 // wait until Sequence Complete Flag set
 // CAUTION: no loop time limit implemented!
 while((ATD0STAT0 & BM_SCF) == 0) ;
 // read result register
 return ATD0DR0;
 }

//---

User Manual

17

Integrated D/A-Converter

The MC9S12E128 provides two analog output signals at port pins
PM0 and PM1. These signals are generated by two D/A-converter
modules (DAC0, DAC1), providing 8 bit resolution each. The DAC
module outputs can only drive very light loads. Therefore, each channel
is equipped with an external operational amplifier in voltage follower
configuration (IC5A, IC5B). The output signals of these amplifiers can
be accessed at X5/45+46.

The software needed to operate the DAC is quite simple, as
illustrated in the following source listing:

//===
// File: S12_DAC.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12e128.h>
#include "s12_dac.h"

//-- Code ---

// Func: Initialize DAC0 module
// Args: -
// Retn: -
//
void initDAC0(void) {

 // enable DAC module
 // use right-justified unsigned data
 // output enable
 DAC0D = 0;
 DAC0C0 = BM_DACE | BM_DJM | BM_DACOE;
 }

//---

// Func: set DAC0 output
// Args: 8 bit value
// Retn: -
//
void setDAC0(UINT8 value) {

 DAC0DL = value;
 }

//---

When the DAC access rate is very high, it could be better to replace
the setDAC0() function by a macro:

#define setDAC0(b) DAC0DL = b

LVCS12

18

RS232 Interfaces

The MC9S12Exx provides three asynchronous serial interfaces
(SCI0, SCI1, SCI2). Each interface has one receive line and one trans-
mit line (RXDx, TXDx). Handshake lines are not provided by the SCI
module; they can be added by using general purpose I/O port lines if
required.

On the LVCS12, the signals of two SCIs are connected to the
RS232 line transceiver circuit IC3. If the RS232 interface is not needed
in an application, the outputs R1OUT and R2OUTof IC3 can be tri-sta-
ted by connecting contacts 2-3 of solder bridge BR2. As a consequence,
the MCU signals PS0...PS3 can be used as additional general-purpose
I/Os.

To reduce current consumption, IC3 can be brought into suspend
mode by setting solder bridge BR3 to position 2-3. Now, the MCU's
signal PP5 can be used to control the /SHDN input of the RS232
transceiver chip. Low level activates the power-saving suspend mode of
IC3.

X3 (SCI0) is used as the primary RS232 interface. To connect the
LVCS12 to a PC, a 10-wire flat ribbon cable can be used. The cable
must have a 10-pin female header connector at the LVCS12 side (X3)
and a female Sub-D9 connector at the PC side.

The above is valid for X4 (SCI1) as well, provided that BR4 and
BR5 are in position 1-2 (default state). In this case, the PC serves as the
host and LVCS12 is configured as device.

The reverse configuration can be used to connect a serial LC
display to X4. In this case, the LVCS12 is the host and the LCD is the
device. The required signal crossing is done by changing BR4 and BR5
to position 2-3. Additionally, it might be useful to close BR6 in order to
supply the LCD module via pin 9 of the Sub-D9 connector (Caution:
this is not conform with RS232 standard!).

Suitable serial, alphanumeric LC-Displays are offered by a number
of manufacturers.

User Manual

19

The following code example shows how to use SCI0 in polling
mode.

//===
// File: S12_SCI.C - V1.10
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_sci.h"

//-- Code ---

void initSCI0(UINT16 bauddiv) {

 SCI0BD = bauddiv & 0x1fff; // baudrate divider has 13 bits
 SCI0CR1 = 0; // mode = 8N1
 SCI0CR2 = BM_TE+BM_RE; // Transmitter + Receiver enable
 }

//---

BOOL testSCI0(void) {

 if((SCI0SR1 & BM_RDRF) == 0) return FALSE;
 return TRUE;
 }

//---

UINT8 getSCI0(void) {

 while((SCI0SR1 & BM_RDRF) == 0) ;
 return SCI0DRL;
 }

//---

void putSCI0(UINT8 c) {

 while((SCI0SR1 & BM_TDRE) == 0) ;
 SCI0DRL = c;
 }

//---

LVCS12

20

SPI Bus

The MC9S12E128 contains one SPI module SPI0), which can be
used for synchronous serial communication with external SPI chips.

SPI0 consists of four individual signals: MISO, MOSI, SCK and
/SS (MCU port pins PS4 to PS7). These signals are not used on-bord
the LVCS12, though they can be accessed through the header connec-
tors at the edges of the board.

The following listing demonstrates some basic functions (initializa-
tion, 8-bit data transfer) for the SPI-Port SPI0 (chip select signal
handling not included):

//===
// File: S12_SPI.C - V1.02
//===

//-- Includes ---

#include "datatypes.h"
#include <mc9s12dp512.h>
#include "s12_spi.h"

//-- Code ---

void initSPI0(UINT8 bauddiv, UINT8 cpol, UINT8 cpha) {

 // set SS,SCK,MOSI lines to Output
// DDRM |= 0x38; // for HCS12C-Series
 DDRS |= 0xe0; // for HCS12D-Series
 SPI0BR = bauddiv; // set SPI Rate
 // enable SPI, Master Mode, select clock polarity/phase
 SPI0CR1 = BM_SPE | BM_MSTR | (cpol ? BM_CPOL : 0) | (cpha ? BM_CPHA : 0);
 SPI0CR2 = 0; // as default
 }

//---

UINT8 xferSPI0(UINT8 abyte) {

 while((SPI0SR & BM_SPTEF) == 0) ; // wait until transmitter available
 SPI0DR = abyte; // start transfer
 while((SPI0SR & BM_SPIF) == 0) ; // wait until transfer finished
 return(SPI0DR); // read back data received
 }

//===

User Manual

21

IIC-Bus

The MC9S12Exx offers an Inter-IC-Bus (IIC/I2C/I2C) connection
on port pins PM6 and PM7. This function is supported by an integrated
hardware module, not only a software emulation.

The bus lines (SDA, SCL) are equipped with appropriate pull-up
resistors (R9, R10).

On the LVCS12 module, the Real Time Clock (IC6) and the serial
EEPROM (IC4) are controlled by the IIC bus. The bus signals can also
be used externally (X5/47+48).

The file S12_IIC.C contains a demo implementation for the IIC
module in master mode using polling. Motorola's Application Note
AN2318 provides further reading, including suggestions for the imple-
mentation of an interrupt-driven IIC handler.

LVCS12

22

Serial EEPROM

The MC9S12Exx MCUs do not contain any EEPROM. To
compensate this, a serial memory device has been added on the
LVCS12. IC4 provides 256 kbit non-volatile memory space. It is
connected to the IIC bus interface.

The file LVCS12_SEEP.C demonstrates how to handle this device:

//===
// File: LVCSS12_SEEP.C - V1.01
// for LVCS12 using 256kBit EEPROM 24LC256
//===

//-- Includes ---

#include "datatypes.h"
#include "s12_iic.h"
#include "lvcs12_seep.h"

//-- Defines --

// device signature of 24LC256 (8 bit left-justified value)
#define SEEP_DEVICE_ID 0xA0

//-- Variables --

static INT16 SEEP_ErrorCode;

//-- Code ---

void initSEEP(void) {

 SEEP_ErrorCode = SEEP_EC_OK;
 }

//---

INT16 peekSEEP(UINT16 addr) {

 UINT8 b;

 SEEP_ErrorCode = SEEP_EC_OK;
 startIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_WRITE) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_NOTRDY;
 else {
 if(sendIIC((UINT8)((addr >> 8) & 0x7f)) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC((UINT8)addr) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 restartIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_READ) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_RDERR;
 else {
 b = receiveIIC(IIC_NOACK);
 }
 }
 }
 }
 stopIIC();
 if(SEEP_ErrorCode != SEEP_EC_OK)
 return SEEP_ErrorCode;
 return b;
 }

User Manual

23

//---

INT16 pokeSEEP(UINT16 addr, UINT8 bval) {

 SEEP_ErrorCode = SEEP_EC_OK;
 startIIC();
 if(sendIIC(SEEP_DEVICE_ID + IIC_WRITE) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_NOTRDY;
 else {
 if(sendIIC((UINT8)((addr >> 8) & 0x7f)) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC((UINT8)addr) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_ADDRERR;
 else {
 if(sendIIC(bval) != IIC_ACK)
 SEEP_ErrorCode = SEEP_EC_WRERR;
 }
 }
 }
 stopIIC();
 return SEEP_ErrorCode;
 }

//---

INT16 getLastErrSEEP(void) {

 return SEEP_ErrorCode;
 }

//===

Indicator LED

Port pin PE7 drives an indicator LED (D2). To control this LED,
some simple macros can be used, as shown in the following C header
file:

//===
// File: LVCS12_LED.H - V1.00
//===

#ifndef __LVCS12_LED_H
#define __LVCS12_LED_H

//-- Macros ---

#define initLED() PORTE |= 0x80; DDRE |= 0x80
#define offLED() PORTE |= 0x80
#define onLED() PORTE &= ~0x80
#define toggleLED() PORTE ^= 0x80

//-- Function Prototypes --

/* module contains no code */

#endif //__LVCS12_LED_H ===

LVCS12

24

Real Time Clock

The LVCS12 module contains a R2051 Real Time Clock (RTC)
from Ricoh. This chip has an IIC interface and provides time reference
and calendar information.

Interrupts can be generated by the R2051 in different ways. The
periodic interrupt system is configured to generate interrupt signals with
a user-selectable rate. Furthermore, two alarm interrupts can be genera-
ted at preset times. The open-drain output pin /INTR of the RTC is
brought out to X6/8 as signal /IRTC. It can be connected externally to
one of the MCU's interrupt inputs (/IRQ, /XIRQ or some general-pur-
pose I/O-pin).

A backup battery (BT1) provides a backup supply in case the main
power (VCC) fails. BT1 is a 3V LiMn primary battery. The switchover
to backup power is done automatically by the RTC whenever VCC falls
below 2.4V. Under this condition, the /VDCC output of the RTC is
driven low. By closing BR7, this signal can be used as an additional
system reset source.

LVCS12_RTC.C contains a set of functions to control the RTC on
the LVCS12.

User Manual

25

7. Application Hints

Behaviour after Reset

As soon as the reset input of the microcontroller is released, the
MCU reads the Interrupt Vector at memory address $FFFE/F and then
jumps to the address found there.

In the default delivery condition of the LVCS12, the MCU's Flash
boot block ($F000-$FFFF) contains the TwinPEEKs Monitor Program.
The reset vector points to the start of this Monitor firmware. As a result,
the monitor will start immediately after reset (for details refer to the
Monitor description below).

Startup Code

Every microcontroller firmware starts with a number of hardware
initialization commands. For the LVCS12, only setting up the stack
pointer is crucial.

While it was important for HC12 derivatives to disable the
Watchdog, the COP Watchdog of HCS12 devices is already disabled
out of reset.

Additional Information on the Web

Any additional information about the LVCS12 Controller Module
will be published on our website, as it becomes available:

http://elmicro.com/en/lvcs12.html

LVCS12

26

8. TwinPEEKs Monitor
Software Version 2.3

Serial Communication

TwinPEEKs communicates over the first RS232 interface ("SER0",
X3) at 19200 Baud. Settings are: 8N1, no hardware or software hand-
shake, no protocol.

Autostart Function

After reset, the TwinPEEKs monitor detects if port pin PT4 is
connected to port pin PT5. If this is the case, the monitor immediately
jumps to address $8000.

This feature allows to start an application program automatically
without modifying the reset vector, which is located in the protected
Flash Boot Block.

Write Access to Flash EEPROM

The CPU can read every single byte of the microcontroller's resour-
ces - the type of memory does not matter. However, for write accesses,
some rules have to be followed: Flash EEPROM has to be erased before
any write attempt. Programming is done by writing words (two bytes at
a time) to aligned addresses.

To form such aligned words, two subsequent bytes have to be
combined. TwinPEEKs is aware of this, but the following problem can
not be avoided by the monitor:

The monitor is processing each S-Record line seperately. If the last
address of such an S-Record is even, the 2nd byte to form a complete
word is missing. TwinPEEKs will append an $FF byte in this case, so it
is able to perform the word write.

User Manual

27

A problem occurs, if the byte stream is continued in the subsequent
S-Record line. The byte, that was missing in the first attempt, would
require a second write access to the same (word) address - which is not
allowed. As a consequence, a write error ("not erased") will be issued.

To avoid this problem, it is necessary to align all S-Record data
before programming. This can be done using the freely available
Motorola Tool SRECCVT:
SRECCVT -m 0x00000 0xfffff 32 -o <outfile> <infile>

A detailed description of this tool is contained in the SRECCVT
Reference Guide (PDF).

Please note, that it is not possible to program or erase the part of
Flash memory that contains the monitor code.

Redirected Interrupt Vectors

The interrupt vectors of the HCS12 are located at the end of the
64KB memory address range, which falls within the protected monitor
code space. Therefore, the application program can not modify the
interrupt vectors directly. To provide an alternative way, the monitor
redirects all vectors (except the reset vector) to RAM. The procedure is
similar to how the HC11 behaved in Special Bootstrap Mode.

The application program can set the required interrupt vectors
during runtime (before global interrupt enable!) by placing a jump
instruction into the RAM pseudo vector. The following example shows
the steps to utilizy the IRQ interrupt:

ldaa #$06 ; JMP opcode to
staa $3FEE ; IRQ pseudo vector
ldd #isrFunc ; ISR address to
std $3FEF ; IRQ pseudo vector + 1

For a C program, the following sequence could be used:
// install IRQ pseudo vector in RAM
// (if running with TwinPEEKs monitor)

 *((unsigned char *)0x3fee) = 0x06; // JMP opcode
 *((void (**)(void))0x3fef) = isrFunc;

LVCS12

28

The following assembly listing is part of the monitor program. It
shows the original vector addresses (1st column from the left) as well as
the redirected addresses in RAM (2nd column):

FF80 : 3F43 dc.w TP_RAMTOP-189 ; reserved
FF82 : 3F46 dc.w TP_RAMTOP-186 ; reserved
FF84 : 3F49 dc.w TP_RAMTOP-183 ; reserved
FF86 : 3F4C dc.w TP_RAMTOP-180 ; reserved
FF88 : 3F4F dc.w TP_RAMTOP-177 ; PWM Emergency Shutdown
FF8A : 3F52 dc.w TP_RAMTOP-174 ; VREG LVI
FF8C : 3F55 dc.w TP_RAMTOP-171 ; PMF Fault 3
FF8E : 3F58 dc.w TP_RAMTOP-168 ; PMF Fault 2
FF90 : 3F5B dc.w TP_RAMTOP-165 ; PMF Fault 1
FF92 : 3F5E dc.w TP_RAMTOP-162 ; PMF Fault 0
FF94 : 3F61 dc.w TP_RAMTOP-159 ; PMF Gen C reload
FF96 : 3F64 dc.w TP_RAMTOP-156 ; PMF Gen B reload
FF98 : 3F67 dc.w TP_RAMTOP-153 ; PMF Gen A reload
FF9A : 3F6A dc.w TP_RAMTOP-150 ; T2 Pulse Accu Input Edge
FF9C : 3F6D dc.w TP_RAMTOP-147 ; T2 Pulse Accu Overflow
FF9E : 3F70 dc.w TP_RAMTOP-144 ; Timer 2 Overflow
FFA0 : 3F73 dc.w TP_RAMTOP-141 ; Timer 2 channel 7
FFA2 : 3F76 dc.w TP_RAMTOP-138 ; Timer 2 channel 6
FFA4 : 3F79 dc.w TP_RAMTOP-135 ; Timer 2 channel 5
FFA6 : 3F7C dc.w TP_RAMTOP-132 ; Timer 2 channel 4
FFA8 : 3F7F dc.w TP_RAMTOP-129 ; reserved
FFAA : 3F82 dc.w TP_RAMTOP-126 ; T1 Pulse Accu Input Edge
FFAC : 3F85 dc.w TP_RAMTOP-123 ; T1 Pulse Accu Overflow
FFAE : 3F88 dc.w TP_RAMTOP-120 ; Timer 1 Overflow
FFB0 : 3F8B dc.w TP_RAMTOP-117 ; Timer 1 channel 7
FFB2 : 3F8E dc.w TP_RAMTOP-114 ; Timer 1 channel 6
FFB4 : 3F91 dc.w TP_RAMTOP-111 ; Timer 1 channel 5
FFB6 : 3F94 dc.w TP_RAMTOP-108 ; Timer 1 channel 4
FFB8 : 3F97 dc.w TP_RAMTOP-105 ; FLASH
FFBA : 3F9A dc.w TP_RAMTOP-102 ; reserved
FFBC : 3F9D dc.w TP_RAMTOP-99 ; reserved
FFBE : 3FA0 dc.w TP_RAMTOP-96 ; reserved
FFC0 : 3FA3 dc.w TP_RAMTOP-93 ; IIC
FFC2 : 3FA6 dc.w TP_RAMTOP-90 ; reserved
FFC4 : 3FA9 dc.w TP_RAMTOP-87 ; Self Clock Mode
FFC6 : 3FAC dc.w TP_RAMTOP-84 ; PLL Lock
FFC8 : 3FAF dc.w TP_RAMTOP-81 ; reserved
FFCA : 3FB2 dc.w TP_RAMTOP-78 ; reserved
FFCC : 3FB5 dc.w TP_RAMTOP-75 ; reserved
FFCE : 3FB8 dc.w TP_RAMTOP-72 ; Port AD
FFD0 : 3FBB dc.w TP_RAMTOP-69 ; ATD
FFD2 : 3FBE dc.w TP_RAMTOP-66 ; SCI2
FFD4 : 3FC1 dc.w TP_RAMTOP-63 ; SCI1
FFD6 : 3FC4 dc.w TP_RAMTOP-60 ; SCI0
FFD8 : 3FC7 dc.w TP_RAMTOP-57 ; SPI0
FFDA : 3FCA dc.w TP_RAMTOP-54 ; T0 Pulse Accu Input Edge
FFDC : 3FCD dc.w TP_RAMTOP-51 ; T0 Pulse Accu Overflow
FFDE : 3FD0 dc.w TP_RAMTOP-48 ; Timer 0 Overflow
FFE0 : 3FD3 dc.w TP_RAMTOP-45 ; Timer 0 channel 7
FFE2 : 3FD6 dc.w TP_RAMTOP-42 ; Timer 0 channel 6
FFE4 : 3FD9 dc.w TP_RAMTOP-39 ; Timer 0 channel 5
FFE6 : 3FDC dc.w TP_RAMTOP-36 ; Timer 0 channel 4
FFE8 : 3FDF dc.w TP_RAMTOP-33 ; reserved
FFEA : 3FE2 dc.w TP_RAMTOP-30 ; reserved
FFEC : 3FE5 dc.w TP_RAMTOP-27 ; reserved
FFEE : 3FE8 dc.w TP_RAMTOP-24 ; reserved
FFF0 : 3FEB dc.w TP_RAMTOP-21 ; RTI
FFF2 : 3FEE dc.w TP_RAMTOP-18 ; IRQ
FFF4 : 3FF1 dc.w TP_RAMTOP-15 ; XIRQ
FFF6 : 3FF4 dc.w TP_RAMTOP-12 ; SWI
FFF8 : 3FF7 dc.w TP_RAMTOP-9 ; Illegal Opcode
FFFA : 3FFA dc.w TP_RAMTOP-6 ; COP Fail
FFFC : 3FFD dc.w TP_RAMTOP-3 ; Clock Monitor Fail
FFFE : F000 dc.w main ; Reset

User Manual

29

Usage

All TwinPEEKs commands start with a single character, followed
by a number of arguments (as required). All numbers are hexadecimal
numbers without prefix or suffix. Both, upper and lower case letters are
allowed.

The CPU's visible address range is 64KB, therefore address
arguments are not longer than 4 digits. An end address always refers to
the following (not included) address. For example, the command "D
1000 1200" will display the address range from $1000 to (including)
$11FF.

User input is handled by a line buffer. Valid ASCII codes are in the
range from $20 to $7E. Backspace ($08) will delete the character left of
the cursor. The <ENTER> key ($0A) is used to conclude the input.

The monitor prompt always displays the current program page (i.e.,
the contents of the PPAGE register).

Monitor Commands

Blank Check
Syntax: B

Blank check whole Flash Memory (ex. monitor code space). If
Flash memory is not blank, then display number of first page containing
a byte not equal to $FF.

Dump Memory
Syntax: D [adr1 [adr2]]

Display memory contents from address adr1 until address adr2. If
end address adr2 is not given, display the following $40 bytes. Memory
location adr1 will be highlighted in the listing.

LVCS12

30

Edit Memory
Syntax: E [addr {byte}]

Edit memory contents. In the command line, the start address addr
can be followed by up to four data bytes {byte}, thus allowing byte,
word and doubleword writes. The write access will be performed
immediately and then the function will return to the input prompt.

If the command line did not contain any data {byte}, the interactive
mode will be started. The monitor is able to identify memory areas
which can only be changed on a word-by-word basis (Flash/EEPROM).
In such cases, the monitor always awaits and uses 16-bit data.

To exit the interactive mode, simply type "Q" . Additional
commands are:
 <ENTER> next address
 - previous address
 = same address
 . exit (like Q)

Fill Memory
Syntax: F adr1 adr2 byte

Fill memory area starting at address adr1 and ending before adr2
with the value byte.

Goto Address
Syntax: G [addr]

Call the application program at address addr. Note: there is no
regular way for the application program to return to the monitor.

Help
Syntax: H

Display a brief command overview.

User Manual

31

System Info
Syntax: I

Display system information. This includes address range of register
block, RAM, EEPROM and Flash, and the MCU identifier (PARTID).

Load
Syntax: L

Load an S-Record file into memory. Data records of type S1 (16-bit
MCU addresses) and S2 (linear 24-bit addresses) can be processed.
S0-Records (comment lines) will be skipped. S8- and S9-Records are
recognized as end-of-file mark.

S2-Records use linear adresses according to Motorola guidelines.
The valid address range for the MC9S12E128 starts at 0xE0000 (0x38 *
16KB) and ends at 0xFFFFF (0x40 * 16 KB - 1).

Before loading into non-volatile memory (Flash/EEPROM), this
kind of memory must always be erased. Also, only word writes can be
used in this case. It may be required to prepare S-Record data accor-
dingly, before it can be downloaded (see instructions above).

The sending terminal program (such as OC-Console) must wait for
the acknowledge byte (*), before starting the transmission of another
line. This way, the transmission speed of both sides (PC and MCU) are
synchronized.

Move Memory
Syntax: M adr1 adr2 adr3

Copy a memory block starting at address adr1 and ending at adr2
(not included) to the area starting at address adr3.

LVCS12

32

Select PPAGE
Syntax: P [page]

Select a program page (PPAGE). This page will become visible in
the 16KB page window from $8000 to $BFFF.

Erase Flash
Syntax: X [page]

Erase one page (16KB) of Flash memory.

If page is not specified, the whole Flash memory (ex. monitor code
space) will be erased after user confirmation. To remove (erase) the
monitor code, a BDM tool such as ComPOD12/StarProg is required.

User Manual

33

9. Memory Map
The memory map of the microcontroller is initialized by the

TwinPEEKs monitor as follows (please note: some settings are different
from reset default values!):

LVCS12.E128

16KB Flash (equals Page $3F)
TwinPEEKs uses the top 4KB$FFFF$C000

16KB Flash page $38
(any Page $38..$3F, selectable by PPAGE)$BFFF$8000

16KB Flash (equals Page $3E)$7FFF$4000

8KB RAM (reset default: $0000-$1FFF)
TwinPEEKs uses the top 512 bytes$3FFF$2000

Control Registers$03FF$0000

RessourceEndBegin

LVCS12

34

